# Import required libraries import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer MODEL_NAME = "SeaLLMs/SeaLLM-7B-v2.5" # Download model and tokenizer from Hugging Face tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype="auto", device_map="auto") # Define the chatbot function def chatbot(user_input): inputs = tokenizer(user_input, return_tensors="pt").to("cuda") outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create a Gradio interface interface = gr.Interface( fn=chatbot, inputs="text", outputs="text", title="SeaLLM Chatbot", description="A chatbot powered by SeaLLM-7B-v2.5.", examples=["Hello!", "What's the weather today?", "Tell me a joke!"], ) # Launch the interface if __name__ == "__main__": interface.launch()