louiecerv commited on
Commit
a36dd4a
Β·
1 Parent(s): ed82320

updated the README

Browse files
Files changed (1) hide show
  1. README.md +82 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: SVM Regressor
3
- emoji: πŸš€
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: streamlit
@@ -12,3 +12,84 @@ short_description: App demonstrating the SVM Regressor
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: SVM Regressor
3
+ emoji: πŸ€–
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: streamlit
 
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
15
+
16
+ # SVM Regressor Demo πŸ€–
17
+
18
+ This app demonstrates the use of Support Vector Machines (SVM) for regression problems in various domains. It provides a user-friendly interface to select a problem, visualize the dataset, train an SVM Regressor, and interpret the results.
19
+
20
+ ## Features
21
+
22
+ * **Problem Selection:** Choose from three example problems: Business πŸ’Ό, Engineering βš™οΈ, or Education πŸŽ“.
23
+ * **Dataset Display:** View the corresponding dataset for the selected problem, along with a description of its features.
24
+ * **Model Training and Performance:** Train an SVM Regressor on the selected dataset. Display the model's performance using metrics like R-squared and Mean Squared Error. Adjust hyperparameters to fine-tune the model. Visualize the regression results using a scatter plot with a regression line.
25
+ * **Output Interpretation:** Get a clear explanation of the model's output in the context of the selected problem. Understand the significance of the results and how they can be used for predictions or decisions.
26
+
27
+ ## Learning Objectives
28
+
29
+ * Understand the concept of SVM Regression and its applications.
30
+ * Learn how to train and evaluate SVM Regressors using Python.
31
+ * Explore the impact of different hyperparameters on the model's performance.
32
+ * Interpret and explain the results of SVM Regression in various domains.
33
+
34
+ ## Datasets
35
+
36
+ The app uses three synthetic datasets for demonstration purposes:
37
+
38
+ * **Business πŸ’Ό:**
39
+ * **Features:** `Usage` (in hours), `Demographics` (binary)
40
+ * **Target:** `Churn` (continuous)
41
+ * **Description:** Predicts customer churn based on usage patterns and demographics.
42
+ * **Engineering βš™οΈ:**
43
+ * **Features:** `Sensor_Data` (continuous)
44
+ * **Target:** `RUL` (Remaining Useful Life) (continuous)
45
+ * **Description:** Predicts the remaining useful life of an industrial machine based on sensor data.
46
+ * **Education πŸŽ“:**
47
+ * **Features:** `Study_Hours` (continuous), `Prev_Grades` (continuous)
48
+ * **Target:** `Test_Scores` (continuous)
49
+ * **Description:** Predicts student performance on a standardized test based on study habits and previous grades.
50
+
51
+ ## How to Use
52
+
53
+ 1. **Select a Problem:** Choose one of the three problems from the dropdown menu.
54
+ 2. **View Dataset:** The corresponding dataset will be displayed, along with a description of its features.
55
+ 3. **Train and Evaluate Model:** Adjust the hyperparameters (kernel, C, epsilon) using the sliders. The model will be trained on the dataset and its performance metrics will be displayed.
56
+ 4. **Visualize Results:** The regression results will be visualized using a scatter plot with a regression line.
57
+ 5. **Interpret Output:** Read the interpretation of the model's output in the context of the selected problem.
58
+
59
+ ## Additional Features
60
+
61
+ * **Interactive Visualizations:** Explore the impact of different hyperparameters on the model's performance by adjusting the sliders and observing the changes in the regression results.
62
+ * **Upload Your Own Data:** Train an SVM Regressor on your own dataset by uploading a CSV file. (This feature is not yet implemented.)
63
+
64
+ ## Requirements
65
+
66
+ * Python 3.7+
67
+ * Streamlit
68
+ * Pandas
69
+ * Scikit-learn
70
+ * Matplotlib
71
+
72
+ ## Installation
73
+
74
+ 1. Install Python 3.7+
75
+ 2. Create a virtual environment (optional but recommended)
76
+ 3. Activate the virtual environment
77
+ 4. Install the required packages using pip: `pip install streamlit pandas scikit-learn matplotlib`
78
+
79
+ ## Usage
80
+
81
+ 1. Download the repository and unzip it.
82
+ 2. Navigate to the repository directory.
83
+ 3. Run the app using `streamlit run app.py`.
84
+
85
+ ## Contributing
86
+
87
+ Contributions are welcome! If you find any bugs, have suggestions for improvements, or want to add new features, please feel free to submit a pull request.
88
+
89
+ ## License
90
+
91
+ This project is licensed under the MIT License. See the LICENSE file for more details.
92
+
93
+ ## Acknowledgements
94
+
95
+ This app is inspired by [https://medium.com/coinmonks/support-vector-regression-or-svr-8eb3acf6d0ff](https://medium.com/coinmonks/support-vector-regression-or-svr-8eb3acf6d0ff).