Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
def generate_business_data(): | |
np.random.seed(0) | |
n_samples = 100 | |
usage_patterns = np.random.rand(n_samples) * 100 | |
demographics = np.random.randint(0, 2, n_samples) | |
churn = ( | |
10 + 5 * usage_patterns - 2 * demographics + np.random.randn(n_samples) * 5 | |
) | |
df = pd.DataFrame({"Usage": usage_patterns, "Demographics": demographics, "Churn": churn}) | |
df.to_csv("business_data.csv", index=False) | |
def generate_engineering_data(): | |
np.random.seed(1) | |
n_samples = 100 | |
sensor_data = np.random.rand(n_samples) * 50 | |
rul = 100 - 2 * sensor_data + np.random.randn(n_samples) * 10 | |
df = pd.DataFrame({"Sensor_Data": sensor_data, "RUL": rul}) | |
df.to_csv("engineering_data.csv", index=False) | |
def generate_education_data(): | |
np.random.seed(2) | |
n_samples = 100 | |
study_hours = np.random.rand(n_samples) * 50 | |
prev_grades = np.random.rand(n_samples) * 4 | |
test_scores = 20 + 5 * study_hours + 10 * prev_grades + np.random.randn(n_samples) * 5 | |
df = pd.DataFrame({"Study_Hours": study_hours, "Prev_Grades": prev_grades, "Test_Scores": test_scores}) | |
df.to_csv("education_data.csv", index=False) | |
if __name__ == "__main__": | |
generate_business_data() | |
generate_engineering_data() | |
generate_education_data() |