Spaces:
Runtime error
Runtime error
import json | |
import requests | |
import streamlit as st | |
st.set_page_config(layout="wide") | |
with open("utils/table_contents.md", "r") as f: | |
contents = f.read() | |
st.sidebar.markdown(contents) | |
st.title("The Stack Bot π€") | |
intro = """ | |
The Stack Bot is a tool to help you get started with tools developed in [BigCode](https://huggingface.co/bigcode), | |
such as [The Stack](https://huggingface.co/bigcode/the-stack) dataset and [SantaCoder](https://huggingface.co/bigcode/santacoder) model. | |
""" | |
st.markdown(intro, unsafe_allow_html=True) | |
def load_languages(): | |
with open("utils/languages.json", "r") as f: | |
languages = json.load(f) | |
return languages | |
def how_to_load(language): | |
text = f""" | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("bigcode/the-stack", data_dir="data/{language}", split="train") | |
# print first element | |
print(dataset[0]) | |
``` | |
""" | |
st.markdown(text) | |
def load_model(values, language): | |
model = values["model"] | |
if not model: | |
text = f"""No model available for {language.capitalize()}. If you trained a model on this language, let us know at [email protected] to feature your model!\n\ | |
You can also train your own model on The Stack using the instructions below π""" | |
st.write(text) | |
if st.button("Fine-tune your own model", key=4): | |
st.write("Code available at [GitHub link] + add preview") | |
else: | |
text = f"""{model} is a model that was trained on the {language.capitalize()} subset of The Stack. Here's how to use it:""" | |
code = f""" | |
```python | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained({model}) | |
model = AutoModelForCausalLM.from_pretrained({model}, trust_remote_code=True) | |
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt") | |
outputs = model.generate(inputs) | |
print(tokenizer.decode(outputs[0])) | |
``` | |
""" | |
st.write(text) | |
st.markdown(code) | |
st.write(f"The scores of this model are the following: {values['scores']}") | |
def generate_code( | |
demo, gen_prompt, max_new_tokens=40, temperature=0.2, seed=0 | |
): | |
# call space using its API endpoint | |
#try: | |
url = ( | |
f"{demo}/run/predict/" | |
) | |
r = requests.post( | |
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]} | |
) | |
generated_text = r.json()["data"][0] | |
return generated_text | |
def init_nested_buttons(): | |
if "Models trained on dataset" not in st.session_state: | |
st.session_state["Models trained on dataset"] = False | |
if "Generate code" not in st.session_state: | |
st.session_state["Generate code"] = False | |
if st.button("Models trained on dataset"): | |
st.session_state["Models trained on dataset"] = not st.session_state["Models trained on dataset"] | |
languages = load_languages() | |
col1, col2 = st.columns([1, 1.5]) | |
with col1: | |
selected_language = st.selectbox("Select one of 358 languages in The Stack", list(languages.keys()), key=1) | |
st.write(f"Here's how you can load the {selected_language.capitalize()} subset of The Stack:") | |
code = how_to_load(selected_language) | |
if st.button("More info about the dataset", key=2): | |
st.write(f"The dataset contains {languages[selected_language]['num_examples']} examples.") | |
# we can add some stats about files | |
init_nested_buttons() | |
if st.session_state["Models trained on dataset"]: | |
load_model(languages[selected_language], selected_language) | |
if languages[selected_language]["model"] and languages[selected_language]["gradio_demo"]: | |
st.write(f"Here's a demo to try the model, for more flexibilty you can use the [Gradio demo]({languages[selected_language]['gradio_demo']}).") | |
gen_prompt = st.text_area( | |
"Generate code with prompt:", | |
value="# Implement a function to print hello world", | |
height=100, | |
).strip() | |
if st.button("Generate code"): | |
st.session_state["Generate code"] = not st.session_state["Generate code"] | |
if st.session_state["Generate code"]: | |
with st.spinner("Generating code..."): | |
generated_text = generate_code( | |
demo=languages[selected_language]["gradio_demo"], | |
gen_prompt=gen_prompt, | |
) | |
if not generated_text: | |
st.markdown(f"Error: could not generate code. Make sure the Gradio demo at [{languages[selected_language]['gradio_demo']}]({languages[selected_language]['gradio_demo']}) works.") | |
else: | |
st.code(generated_text) |