the-stack-bot / app.py
loubnabnl's picture
loubnabnl HF Staff
add files
2171b06
raw
history blame
4.8 kB
import json
import requests
import streamlit as st
st.title("The Stack Bot πŸ€–")
intro = """
The Stack Bot is a tool to help you get started with tools developed in [BigCode](https://huggingface.co/bigcode),
such as [The Stack](https://huggingface.co/bigcode/the-stack) dataset and [SantaCoder](https://huggingface.co/bigcode/santacoder) model.
We show information about existing programming languages and models trained on them. If you trained a model on The Stack, let us know so we feature your model! πŸš€
"""
st.markdown(intro, unsafe_allow_html=True)
@st.cache()
def load_languages():
with open("languages.json", "r") as f:
languages = json.load(f)
return languages
def how_to_load(language):
text = f"""
```python
from datasets import load_dataset
dataset = load_dataset("bigcode/the-stack", data_dir=f"data/{language}, split="train")
```
"""
st.markdown(text)
def load_model(values, language):
model = values["model"]
if not model:
text = f"""No model available for {language.capitalize()}. If you trained a model on this language, let us know at [email protected] to feature your model!\n\
You can also train your own model on The Stack using the instructions below πŸš€"""
st.write(text)
if st.button("Fine-tune your own model", key=4):
st.write("Code available at [GitHub link] + add preview + example of time & required hardware estimation")
else:
text = f"""{model} is a model that was trained on the {language} from The Stack. Here's how to use it:"""
code = f"""
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained({model})
model = AutoModelForCausalLM.from_pretrained({model}, trust_remote_code=True).to(device)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
"""
st.write(text)
st.markdown(code)
st.write("The scores of this model are the following:")
for key, value in values["scores"].items():
st.write(f"{key}: {value}")
def generate_code(
demo, gen_prompt, max_new_tokens=40, temperature=0.2, seed=0
):
# call space using its API endpoint
try:
url = (
f"https://hf.space/embed/{demo.lower()}/+/api/predict/"
)
r = requests.post(
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
)
generated_text = r.json()["data"][0]
except:
generated_text = ""
return generated_text
def init_nested_buttons():
if "Models trained on dataset" not in st.session_state:
st.session_state["Models trained on dataset"] = False
if "Generate code" not in st.session_state:
st.session_state["Generate code"] = False
if st.button("Models trained on dataset"):
st.session_state["Models trained on dataset"] = not st.session_state["Models trained on dataset"]
languages = load_languages()
col1, col2 = st.columns([1, 2])
with col1:
selected_language = st.selectbox("Languages of The Stack", list(languages.keys()), key=1)
st.write(f"Here's how you can load the {selected_language.capitalize()} subset of The Stack:")
code = how_to_load(selected_language)
if st.button("More info about the dataset", key=2):
st.write(f"The dataset contains {languages[selected_language]['num_examples']} examples.")
# we can add some stats about files
init_nested_buttons()
if st.session_state["Models trained on dataset"]:
load_model(languages[selected_language], selected_language)
if languages[selected_language]["model"] and languages[selected_language]["gradio_demo"]:
st.write(f"Here's a demo to try the model, for more flxibilty you can use the original at [Gradio demo](hf.co/{languages[selected_language]['gradio_demo']})")
gen_prompt = st.text_area(
"Generate code with prompt:",
value="# print hello world",
height=100,
).strip()
if st.button("Generate code"):
st.session_state["Generate code"] = not st.session_state["Generate code"]
if st.session_state["Generate code"]:
generated_text = generate_code(
demo=languages[selected_language]["gradio_demo"],
gen_prompt=gen_prompt,
)
if not generated_text:
st.write(f"Error: could not generate code. Make sure the Gradio demo at hf.co/{languages[selected_language]['gradio_demo']} works.")
else:
st.code(generated_text)