Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -32,7 +32,7 @@ class DocumentSearch:
|
|
32 |
# loading faiss index
|
33 |
self.index = faiss.read_index(DocumentSearch.idx_path)
|
34 |
# loading sbert cross_encoder
|
35 |
-
self.cross_encoder = CrossEncoder(DocumentSearch.cross_enc_path)
|
36 |
|
37 |
def search(self, query: str, k: int) -> list:
|
38 |
# get vector representation of text query
|
@@ -43,24 +43,21 @@ class DocumentSearch:
|
|
43 |
res_docs = [self.docs[i] for i in indeces[0]]
|
44 |
# get scores by index
|
45 |
dists = [dist for dist in distances[0]]
|
46 |
-
|
|
|
|
|
47 |
# get answers by index
|
48 |
-
answers = [self.docs[i] for i in indeces[0]]
|
49 |
# prepare inputs for cross encoder
|
50 |
-
model_inputs = [[query, pairs[0]] for pairs in answers]
|
51 |
-
urls = [pairs[1] for pairs in answers]
|
52 |
# get similarity score between query and documents
|
53 |
-
scores = self.cross_encoder.predict(model_inputs, batch_size=1)
|
54 |
# compose results into list of dicts
|
55 |
-
results = [{'doc': doc[1], 'url': url, 'score': score} for doc, url, score in zip(model_inputs, urls, scores)]
|
56 |
|
57 |
# return results sorted by similarity scores
|
58 |
-
return sorted(results, key=lambda x: x['score'], reverse=True)[:k]
|
59 |
-
|
60 |
-
|
61 |
-
if __name__ == "__main__":
|
62 |
-
# get instance of DocumentSearch class
|
63 |
-
surfer = DocumentSearch()
|
64 |
|
65 |
|
66 |
if __name__ == "__main__":
|
@@ -89,7 +86,7 @@ if __name__ == "__main__":
|
|
89 |
# set start time
|
90 |
stt = time.time()
|
91 |
# retrieve top 5 documents
|
92 |
-
results = surfer.search(query, k=
|
93 |
# set endtime
|
94 |
ent = time.time()
|
95 |
# measure resulting time
|
@@ -114,4 +111,4 @@ if __name__ == "__main__":
|
|
114 |
else:
|
115 |
st.markdown("Typical queries looks like this: _**\"What is flu?\"**_,\
|
116 |
_**\"How to cure breast cancer?\"**_,\
|
117 |
-
_**\"I have headache, what should I do?\"**_")
|
|
|
32 |
# loading faiss index
|
33 |
self.index = faiss.read_index(DocumentSearch.idx_path)
|
34 |
# loading sbert cross_encoder
|
35 |
+
# self.cross_encoder = CrossEncoder(DocumentSearch.cross_enc_path)
|
36 |
|
37 |
def search(self, query: str, k: int) -> list:
|
38 |
# get vector representation of text query
|
|
|
43 |
res_docs = [self.docs[i] for i in indeces[0]]
|
44 |
# get scores by index
|
45 |
dists = [dist for dist in distances[0]]
|
46 |
+
|
47 |
+
return[{'doc': doc[0], 'url': doc[1], 'score': dist} for doc, dist in zip(res_docs, dists)][:k]
|
48 |
+
##### OLD VERSION WITH CROSS-ENCODER #####
|
49 |
# get answers by index
|
50 |
+
#answers = [self.docs[i] for i in indeces[0]]
|
51 |
# prepare inputs for cross encoder
|
52 |
+
# model_inputs = [[query, pairs[0]] for pairs in answers]
|
53 |
+
# urls = [pairs[1] for pairs in answers]
|
54 |
# get similarity score between query and documents
|
55 |
+
# scores = self.cross_encoder.predict(model_inputs, batch_size=1)
|
56 |
# compose results into list of dicts
|
57 |
+
# results = [{'doc': doc[1], 'url': url, 'score': score} for doc, url, score in zip(model_inputs, urls, scores)]
|
58 |
|
59 |
# return results sorted by similarity scores
|
60 |
+
# return sorted(results, key=lambda x: x['score'], reverse=True)[:k]
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
|
|
86 |
# set start time
|
87 |
stt = time.time()
|
88 |
# retrieve top 5 documents
|
89 |
+
results = surfer.search(query, k=10)
|
90 |
# set endtime
|
91 |
ent = time.time()
|
92 |
# measure resulting time
|
|
|
111 |
else:
|
112 |
st.markdown("Typical queries looks like this: _**\"What is flu?\"**_,\
|
113 |
_**\"How to cure breast cancer?\"**_,\
|
114 |
+
_**\"I have headache, what should I do?\"**_")
|