next-sentence-probability / inference_tokenizer.py
lorenpe2's picture
FEAT: Code without models
c186b27
raw
history blame
1.41 kB
import torch
from typing import Dict
class NextSentencePredictionTokenizer:
def __init__(self, _tokenizer, special_token, **_tokenizer_args):
self.tokenizer = _tokenizer
self.tokenizer_args = _tokenizer_args
self.max_length_ctx = self.tokenizer_args.get("max_length_ctx")
self.max_length_res = self.tokenizer_args.get("max_length_res")
del self.tokenizer_args["max_length_ctx"]
del self.tokenizer_args["max_length_res"]
self.tokenizer_args["max_length"] = self.max_length_ctx + self.max_length_res
self.special_token = special_token
def get_item(self, context: str, actual_sentence: str):
actual_item = {"ctx": context.replace("||", self.special_token), "res": actual_sentence}
tokenized = self._tokenize_row(actual_item)
for key in tokenized.data.keys():
tokenized.data[key] = torch.reshape(torch.from_numpy(tokenized.data[key]), (1, -1))
return tokenized
def _tokenize_row(self, row: Dict):
ctx_tokens = row["ctx"].split(" ")
res_tokens = row["res"].split(" ")
# -5 for additional information like [SEP], [CLS]
ctx_tokens = ctx_tokens[-self.max_length_ctx:]
res_tokens = res_tokens[-self.max_length_res:]
_args = (ctx_tokens, res_tokens)
tokenized_row = self.tokenizer(*_args, **self.tokenizer_args)
return tokenized_row