Spaces:
Build error
Build error
Keane Moraes
commited on
Commit
·
1981c78
1
Parent(s):
d87b50e
adding prompts and generation
Browse files- app.py +32 -12
- clustering.py +0 -2
- generation.py +3 -0
- insights.prompt +17 -0
- prompter/insights_33.prompt +21 -0
- utils.py +119 -78
app.py
CHANGED
@@ -1,24 +1,44 @@
|
|
1 |
import streamlit as st
|
2 |
-
from topics import
|
3 |
-
|
4 |
-
import
|
5 |
|
6 |
st.title("Drop the first document")
|
7 |
file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first")
|
8 |
st.title("Drop the second document")
|
9 |
file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second")
|
10 |
|
|
|
|
|
|
|
11 |
if file1 is not None and file2 is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
st.title("Generating insights")
|
|
|
14 |
with st.spinner('Generating insights...'):
|
15 |
-
insight1 = Insights(file1.read().decode("utf-8"))
|
16 |
-
insight2 = Insights(file2.read().decode("utf-8"))
|
17 |
-
st.write(insight1.generate_topics())
|
18 |
-
st.write(insight2.generate_topics())
|
19 |
-
st.write(insight1.text)
|
20 |
-
st.write(insight2.text)
|
21 |
-
embed1 = insight1.generate_embeddings()
|
22 |
-
embed2 = insight2.generate_embeddings()
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from topics import TopicModelling
|
3 |
+
import mdforest
|
4 |
+
import utils
|
5 |
|
6 |
st.title("Drop the first document")
|
7 |
file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first")
|
8 |
st.title("Drop the second document")
|
9 |
file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second")
|
10 |
|
11 |
+
topics = {}
|
12 |
+
results = {}
|
13 |
+
|
14 |
if file1 is not None and file2 is not None:
|
15 |
+
|
16 |
+
input_text1 = file1.read().decode("utf-8")
|
17 |
+
input_text2 = file2.read().decode("utf-8")
|
18 |
+
|
19 |
+
cleaned_text1 = mdforest.clean_markdown(input_text1)
|
20 |
+
cleaned_text2 = mdforest.clean_markdown(input_text2)
|
21 |
|
22 |
st.title("Generating insights")
|
23 |
+
|
24 |
with st.spinner('Generating insights...'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
insight1 = TopicModelling(cleaned_text1)
|
27 |
+
insight2 = TopicModelling(cleaned_text2)
|
28 |
+
|
29 |
+
keywords1, concepts1 = insight1.generate_topics()
|
30 |
+
topics['insight1'] = [keywords1, concepts1]
|
31 |
+
keywords2, concepts2 = insight2.generate_topics()
|
32 |
+
topics['insight2'] = [keywords2, concepts2]
|
33 |
+
st.success('Done!')
|
34 |
+
|
35 |
+
with st.spinner("Flux capacitor is fluxing..."):
|
36 |
+
embedder = utils.load_model()
|
37 |
+
clutered = utils.cluster_based_on_topics(embedder, cleaned_text1, cleaned_text2)
|
38 |
+
print(clutered)
|
39 |
+
st.success("Done!")
|
40 |
+
|
41 |
+
with st.spinner("Polishing up"):
|
42 |
+
results = utils.generate_insights(topics, file1.name, file2.name, cleaned_text1, cleaned_text2, clutered)
|
43 |
+
st.write(results)
|
44 |
+
st.success("Done!")
|
clustering.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
import spacy
|
2 |
-
import pandas as pd
|
|
|
|
|
|
generation.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
|
3 |
+
def
|
insights.prompt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a highly intelligent bot that is tasked with common ideas between documents. The following are two documents that have been topic modelled and have been clustered based on concepts.
|
2 |
+
|
3 |
+
The name for document 1 is : {{name1}}
|
4 |
+
|
5 |
+
The name for document 2 is : {{name2}}
|
6 |
+
|
7 |
+
The topics for document 1 is : {{topic1}}
|
8 |
+
|
9 |
+
The topics for document 2 is : {{topic2}}
|
10 |
+
|
11 |
+
The more complex concepts in document 1 is : {{complex1}}
|
12 |
+
|
13 |
+
The more complex concepts in document 2 is : {{complex2}}
|
14 |
+
|
15 |
+
The sentences in one of the clusters is : {{sentences}}
|
16 |
+
|
17 |
+
From the sentences and topics above, explain the common idea between the documents and write a paragraph about it and give me 3 new concepts that are linked to this idea.
|
prompter/insights_33.prompt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a highly intelligent bot that is tasked with common ideas between documents. The following are two documents that have been topic modelled and have been clustered based on concepts.
|
2 |
+
|
3 |
+
The name for document 1 is : AI tutors will be held back by culture - by Henrik Karlsson.md
|
4 |
+
|
5 |
+
The name for document 2 is : The Stability of Beliefs.md
|
6 |
+
|
7 |
+
The topics for document 1 is : bull,picasso,education,ai,chilean,bull 1945,the bull,of bull,prize bull,bull to
|
8 |
+
|
9 |
+
The topics for document 2 is : belief,beliefs,philosophy,epistemological,philosophic,science belief,scientific beliefs,beliefs ensconced,beliefs of,certain beliefs
|
10 |
+
|
11 |
+
The more complex concepts in document 1 is : picasso lithographs bull,story bull bruce,bull culture necessary,lithographs bull 1945,bull didn know
|
12 |
+
|
13 |
+
The more complex concepts in document 2 is : beliefs michael polanyi,beliefs held scientists,belief science declared,1951 scientific beliefs,michael polanyi essay
|
14 |
+
|
15 |
+
The sentences in one of the clusters is : # key takeaways --- # transcript ## excerpt gpt-4, khan academy, wolfram alpha - we're seeing progress ai tools learning.
|
16 |
+
demo state art ai tutoring capabilities, watch video march 14 salman khan khan academy demonstrates system built top gpt-4. video, khan uses ai model socratic tutor.
|
17 |
+
gpt-4 occasionally hallucinates answers true.
|
18 |
+
models improving faster anticipated, gpt-4 already scores top 10 percent university exams.
|
19 |
+
march 23, nine days khan demo:ed tutoring system, openai partnered wolfram released plugin gives gpt-4 ability things like: way fluidly interacting information, shaping dialogue, immensely powerful.
|
20 |
+
|
21 |
+
From the sentences and topics above, explain the common idea between the documents and write a paragraph about it and give me 3 new concepts that are linked to this idea.
|
utils.py
CHANGED
@@ -2,7 +2,8 @@ import streamlit as st
|
|
2 |
from keybert import KeyBERT
|
3 |
from nltk.corpus import stopwords
|
4 |
from transformers import AutoTokenizer
|
5 |
-
import re
|
|
|
6 |
import spacy
|
7 |
from sklearn.cluster import KMeans, AgglomerativeClustering
|
8 |
import numpy as np
|
@@ -12,8 +13,8 @@ MODEL = 'all-MiniLM-L6-v2'
|
|
12 |
|
13 |
@st.cache_data
|
14 |
def load_autotoken():
|
15 |
-
|
16 |
-
|
17 |
|
18 |
@st.cache_data
|
19 |
def load_keyword_model():
|
@@ -23,85 +24,125 @@ def load_keyword_model():
|
|
23 |
|
24 |
@st.cache_data
|
25 |
def load_model():
|
26 |
-
|
27 |
-
|
28 |
|
29 |
def create_nest_sentences(document:str, token_max_length = 1023):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
def preprocess(text) -> str:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
def generate_keywords(kw_model, document: str) -> list:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
def cluster_based_on_topics(embedder, text1:str, text2:str
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
# Extract sentences from the texts
|
76 |
-
sentences1 = [sent.text for sent in doc1.sents]
|
77 |
-
sentences2 = [sent.text for sent in doc2.sents]
|
78 |
-
all_sentences = sentences1 + sentences2
|
79 |
-
|
80 |
-
with open('insight1_sent.txt', 'w') as f:
|
81 |
-
for item in sentences1:
|
82 |
-
f.write("%s\n" % item)
|
83 |
-
|
84 |
-
with open('insight2_sent.txt', 'w') as f:
|
85 |
-
for item in sentences2:
|
86 |
-
f.write("%s\n" % item)
|
87 |
-
|
88 |
-
# Generate sentence embeddings for each sentence
|
89 |
-
sentence_embeddings1 = embedder.encode(sentences1)
|
90 |
-
sentence_embeddings2 = embedder.encode(sentences2)
|
91 |
-
all_embeddings = np.concatenate((sentence_embeddings1, sentence_embeddings2), axis=0)
|
92 |
-
|
93 |
-
# Normalize the embeddings to unit length
|
94 |
-
all_embeddings = all_embeddings / np.linalg.norm(all_embeddings, axis=1, keepdims=True)
|
95 |
-
|
96 |
-
# Perform kmean clustering
|
97 |
-
clustering_model = AgglomerativeClustering(n_clusters=None, distance_threshold=1.5)
|
98 |
-
clustering_model.fit(all_embeddings)
|
99 |
-
cluster_assignment = clustering_model.labels_
|
100 |
-
|
101 |
-
clustered_sentences = {}
|
102 |
-
for sentence_id, cluster_id in enumerate(cluster_assignment):
|
103 |
-
if cluster_id not in clustered_sentences:
|
104 |
-
clustered_sentences[cluster_id] = []
|
105 |
-
clustered_sentences[cluster_id].append(all_sentences[sentence_id])
|
106 |
-
|
107 |
-
return clustered_sentences
|
|
|
2 |
from keybert import KeyBERT
|
3 |
from nltk.corpus import stopwords
|
4 |
from transformers import AutoTokenizer
|
5 |
+
import os, re
|
6 |
+
import openai
|
7 |
import spacy
|
8 |
from sklearn.cluster import KMeans, AgglomerativeClustering
|
9 |
import numpy as np
|
|
|
13 |
|
14 |
@st.cache_data
|
15 |
def load_autotoken():
|
16 |
+
autotok = AutoTokenizer.from_pretrained('facebook/bart-large-mnli')
|
17 |
+
return autotok
|
18 |
|
19 |
@st.cache_data
|
20 |
def load_keyword_model():
|
|
|
24 |
|
25 |
@st.cache_data
|
26 |
def load_model():
|
27 |
+
embedder = SentenceTransformer(MODEL)
|
28 |
+
return embedder
|
29 |
|
30 |
def create_nest_sentences(document:str, token_max_length = 1023):
|
31 |
+
nested = []
|
32 |
+
sent = []
|
33 |
+
length = 0
|
34 |
+
tokenizer = load_autotoken()
|
35 |
+
|
36 |
+
for sentence in re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', document.replace("\n", '.')):
|
37 |
+
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer
|
38 |
+
length += len(tokens_in_sentence)
|
39 |
+
|
40 |
+
if length < token_max_length:
|
41 |
+
sent.append(sentence)
|
42 |
+
else:
|
43 |
+
nested.append(sent)
|
44 |
+
sent = [sentence]
|
45 |
+
length = 0
|
46 |
+
|
47 |
+
if sent:
|
48 |
+
nested.append(sent)
|
49 |
+
return nested
|
50 |
|
51 |
def preprocess(text) -> str:
|
52 |
+
stop_words = set(stopwords.words("english"))
|
53 |
+
text = text.lower()
|
54 |
+
# text = ''.join([c for c in text if c not in ('!', '.', ',', '?', ':', ';', '"', "'", '-', '(', ')')])
|
55 |
+
words = text.split()
|
56 |
+
words = [w for w in words if not w in stop_words]
|
57 |
+
return " ".join(words)
|
58 |
|
59 |
def generate_keywords(kw_model, document: str) -> list:
|
60 |
+
atomic_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 1), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
|
61 |
+
complex_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 2), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
|
62 |
+
final_topics = []
|
63 |
+
for extraction in atomic_extractions:
|
64 |
+
final_topics.append(extraction[0])
|
65 |
+
for extraction in complex_extractions:
|
66 |
+
final_topics.append(extraction[0])
|
67 |
+
return final_topics
|
68 |
+
|
69 |
+
def cluster_based_on_topics(embedder, text1:str, text2:str):
|
70 |
+
nlp = spacy.load("en_core_web_sm")
|
71 |
+
|
72 |
+
# Preprocess and tokenize the texts
|
73 |
+
doc1 = nlp(preprocess(text1))
|
74 |
+
doc2 = nlp(preprocess(text2))
|
75 |
+
|
76 |
+
# Extract sentences from the texts
|
77 |
+
sentences1 = [sent.text for sent in doc1.sents]
|
78 |
+
sentences2 = [sent.text for sent in doc2.sents]
|
79 |
+
all_sentences = sentences1 + sentences2
|
80 |
+
|
81 |
+
# Generate sentence embeddings for each sentence
|
82 |
+
sentence_embeddings1 = embedder.encode(sentences1)
|
83 |
+
sentence_embeddings2 = embedder.encode(sentences2)
|
84 |
+
all_embeddings = np.concatenate((sentence_embeddings1, sentence_embeddings2), axis=0)
|
85 |
+
|
86 |
+
# Normalize the embeddings to unit length
|
87 |
+
all_embeddings = all_embeddings / np.linalg.norm(all_embeddings, axis=1, keepdims=True)
|
88 |
+
|
89 |
+
# Perform agglomerative clustering
|
90 |
+
clustering_model = AgglomerativeClustering(n_clusters=None, distance_threshold=1.5)
|
91 |
+
clustering_model.fit(all_embeddings)
|
92 |
+
cluster_assignment = clustering_model.labels_
|
93 |
+
|
94 |
+
clustered_sentences = {}
|
95 |
+
for sentence_id, cluster_id in enumerate(cluster_assignment):
|
96 |
+
if cluster_id not in clustered_sentences:
|
97 |
+
clustered_sentences[cluster_id] = []
|
98 |
+
clustered_sentences[cluster_id].append(all_sentences[sentence_id])
|
99 |
+
|
100 |
+
return clustered_sentences
|
101 |
+
|
102 |
+
|
103 |
+
def generate_insights(topics:dict, name1:str, name2:str, text1:str, text2:str, clusters) -> list:
|
104 |
+
|
105 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
106 |
+
|
107 |
+
PROMPT = open("insights.prompt", "r").read()
|
108 |
+
|
109 |
+
print(topics)
|
110 |
+
|
111 |
+
PROMPT = PROMPT.replace("{{name1}}", name1)
|
112 |
+
PROMPT = PROMPT.replace("{{name2}}", name2)
|
113 |
+
|
114 |
+
PROMPT = PROMPT.replace("{{topic1}}", ",".join(topics['insight1'][0]))
|
115 |
+
PROMPT = PROMPT.replace("{{topic2}}", ",".join(topics['insight2'][0]))
|
116 |
+
|
117 |
+
PROMPT = PROMPT.replace("{{complex1}}", ",".join(topics['insight1'][1]))
|
118 |
+
PROMPT = PROMPT.replace("{{complex2}}", ",".join(topics['insight2'][1]))
|
119 |
+
|
120 |
+
final_insights = []
|
121 |
+
|
122 |
+
for cluster_id, sentences in clusters.items():
|
123 |
+
|
124 |
+
PROMPT = PROMPT.replace("{{sentences}}", "\n".join(sentences))
|
125 |
+
|
126 |
+
with open(f"prompter/insights_{cluster_id}.prompt", "w") as f:
|
127 |
+
f.write(PROMPT)
|
128 |
+
|
129 |
+
# Generate insights for each cluster
|
130 |
+
response = openai.Completion.create(
|
131 |
+
model="text-davinci-003",
|
132 |
+
prompt=PROMPT,
|
133 |
+
temperature=0.5,
|
134 |
+
top_p=1,
|
135 |
+
max_tokens=1000,
|
136 |
+
frequency_penalty=0.0,
|
137 |
+
presence_penalty=0.0,
|
138 |
+
)
|
139 |
+
|
140 |
+
text = response['choices'][0]['text']
|
141 |
+
with open(f"prompter/insights_{cluster_id}.txt", "a") as f:
|
142 |
+
f.write(text)
|
143 |
+
|
144 |
+
final_insights.append(text)
|
145 |
+
|
146 |
+
return final_insights
|
147 |
+
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|