Spaces:
Build error
Build error
Keane Moraes
commited on
Commit
·
1981c78
1
Parent(s):
d87b50e
adding prompts and generation
Browse files- app.py +32 -12
- clustering.py +0 -2
- generation.py +3 -0
- insights.prompt +17 -0
- prompter/insights_33.prompt +21 -0
- utils.py +119 -78
app.py
CHANGED
|
@@ -1,24 +1,44 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from topics import
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
|
| 6 |
st.title("Drop the first document")
|
| 7 |
file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first")
|
| 8 |
st.title("Drop the second document")
|
| 9 |
file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second")
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
if file1 is not None and file2 is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
st.title("Generating insights")
|
|
|
|
| 14 |
with st.spinner('Generating insights...'):
|
| 15 |
-
insight1 = Insights(file1.read().decode("utf-8"))
|
| 16 |
-
insight2 = Insights(file2.read().decode("utf-8"))
|
| 17 |
-
st.write(insight1.generate_topics())
|
| 18 |
-
st.write(insight2.generate_topics())
|
| 19 |
-
st.write(insight1.text)
|
| 20 |
-
st.write(insight2.text)
|
| 21 |
-
embed1 = insight1.generate_embeddings()
|
| 22 |
-
embed2 = insight2.generate_embeddings()
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from topics import TopicModelling
|
| 3 |
+
import mdforest
|
| 4 |
+
import utils
|
| 5 |
|
| 6 |
st.title("Drop the first document")
|
| 7 |
file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first")
|
| 8 |
st.title("Drop the second document")
|
| 9 |
file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second")
|
| 10 |
|
| 11 |
+
topics = {}
|
| 12 |
+
results = {}
|
| 13 |
+
|
| 14 |
if file1 is not None and file2 is not None:
|
| 15 |
+
|
| 16 |
+
input_text1 = file1.read().decode("utf-8")
|
| 17 |
+
input_text2 = file2.read().decode("utf-8")
|
| 18 |
+
|
| 19 |
+
cleaned_text1 = mdforest.clean_markdown(input_text1)
|
| 20 |
+
cleaned_text2 = mdforest.clean_markdown(input_text2)
|
| 21 |
|
| 22 |
st.title("Generating insights")
|
| 23 |
+
|
| 24 |
with st.spinner('Generating insights...'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
insight1 = TopicModelling(cleaned_text1)
|
| 27 |
+
insight2 = TopicModelling(cleaned_text2)
|
| 28 |
+
|
| 29 |
+
keywords1, concepts1 = insight1.generate_topics()
|
| 30 |
+
topics['insight1'] = [keywords1, concepts1]
|
| 31 |
+
keywords2, concepts2 = insight2.generate_topics()
|
| 32 |
+
topics['insight2'] = [keywords2, concepts2]
|
| 33 |
+
st.success('Done!')
|
| 34 |
+
|
| 35 |
+
with st.spinner("Flux capacitor is fluxing..."):
|
| 36 |
+
embedder = utils.load_model()
|
| 37 |
+
clutered = utils.cluster_based_on_topics(embedder, cleaned_text1, cleaned_text2)
|
| 38 |
+
print(clutered)
|
| 39 |
+
st.success("Done!")
|
| 40 |
+
|
| 41 |
+
with st.spinner("Polishing up"):
|
| 42 |
+
results = utils.generate_insights(topics, file1.name, file2.name, cleaned_text1, cleaned_text2, clutered)
|
| 43 |
+
st.write(results)
|
| 44 |
+
st.success("Done!")
|
clustering.py
DELETED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
import spacy
|
| 2 |
-
import pandas as pd
|
|
|
|
|
|
|
|
|
generation.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
|
| 3 |
+
def
|
insights.prompt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
You are a highly intelligent bot that is tasked with common ideas between documents. The following are two documents that have been topic modelled and have been clustered based on concepts.
|
| 2 |
+
|
| 3 |
+
The name for document 1 is : {{name1}}
|
| 4 |
+
|
| 5 |
+
The name for document 2 is : {{name2}}
|
| 6 |
+
|
| 7 |
+
The topics for document 1 is : {{topic1}}
|
| 8 |
+
|
| 9 |
+
The topics for document 2 is : {{topic2}}
|
| 10 |
+
|
| 11 |
+
The more complex concepts in document 1 is : {{complex1}}
|
| 12 |
+
|
| 13 |
+
The more complex concepts in document 2 is : {{complex2}}
|
| 14 |
+
|
| 15 |
+
The sentences in one of the clusters is : {{sentences}}
|
| 16 |
+
|
| 17 |
+
From the sentences and topics above, explain the common idea between the documents and write a paragraph about it and give me 3 new concepts that are linked to this idea.
|
prompter/insights_33.prompt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
You are a highly intelligent bot that is tasked with common ideas between documents. The following are two documents that have been topic modelled and have been clustered based on concepts.
|
| 2 |
+
|
| 3 |
+
The name for document 1 is : AI tutors will be held back by culture - by Henrik Karlsson.md
|
| 4 |
+
|
| 5 |
+
The name for document 2 is : The Stability of Beliefs.md
|
| 6 |
+
|
| 7 |
+
The topics for document 1 is : bull,picasso,education,ai,chilean,bull 1945,the bull,of bull,prize bull,bull to
|
| 8 |
+
|
| 9 |
+
The topics for document 2 is : belief,beliefs,philosophy,epistemological,philosophic,science belief,scientific beliefs,beliefs ensconced,beliefs of,certain beliefs
|
| 10 |
+
|
| 11 |
+
The more complex concepts in document 1 is : picasso lithographs bull,story bull bruce,bull culture necessary,lithographs bull 1945,bull didn know
|
| 12 |
+
|
| 13 |
+
The more complex concepts in document 2 is : beliefs michael polanyi,beliefs held scientists,belief science declared,1951 scientific beliefs,michael polanyi essay
|
| 14 |
+
|
| 15 |
+
The sentences in one of the clusters is : # key takeaways --- # transcript ## excerpt gpt-4, khan academy, wolfram alpha - we're seeing progress ai tools learning.
|
| 16 |
+
demo state art ai tutoring capabilities, watch video march 14 salman khan khan academy demonstrates system built top gpt-4. video, khan uses ai model socratic tutor.
|
| 17 |
+
gpt-4 occasionally hallucinates answers true.
|
| 18 |
+
models improving faster anticipated, gpt-4 already scores top 10 percent university exams.
|
| 19 |
+
march 23, nine days khan demo:ed tutoring system, openai partnered wolfram released plugin gives gpt-4 ability things like: way fluidly interacting information, shaping dialogue, immensely powerful.
|
| 20 |
+
|
| 21 |
+
From the sentences and topics above, explain the common idea between the documents and write a paragraph about it and give me 3 new concepts that are linked to this idea.
|
utils.py
CHANGED
|
@@ -2,7 +2,8 @@ import streamlit as st
|
|
| 2 |
from keybert import KeyBERT
|
| 3 |
from nltk.corpus import stopwords
|
| 4 |
from transformers import AutoTokenizer
|
| 5 |
-
import re
|
|
|
|
| 6 |
import spacy
|
| 7 |
from sklearn.cluster import KMeans, AgglomerativeClustering
|
| 8 |
import numpy as np
|
|
@@ -12,8 +13,8 @@ MODEL = 'all-MiniLM-L6-v2'
|
|
| 12 |
|
| 13 |
@st.cache_data
|
| 14 |
def load_autotoken():
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
@st.cache_data
|
| 19 |
def load_keyword_model():
|
|
@@ -23,85 +24,125 @@ def load_keyword_model():
|
|
| 23 |
|
| 24 |
@st.cache_data
|
| 25 |
def load_model():
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
def create_nest_sentences(document:str, token_max_length = 1023):
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
|
| 50 |
def preprocess(text) -> str:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
def generate_keywords(kw_model, document: str) -> list:
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def cluster_based_on_topics(embedder, text1:str, text2:str
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
# Extract sentences from the texts
|
| 76 |
-
sentences1 = [sent.text for sent in doc1.sents]
|
| 77 |
-
sentences2 = [sent.text for sent in doc2.sents]
|
| 78 |
-
all_sentences = sentences1 + sentences2
|
| 79 |
-
|
| 80 |
-
with open('insight1_sent.txt', 'w') as f:
|
| 81 |
-
for item in sentences1:
|
| 82 |
-
f.write("%s\n" % item)
|
| 83 |
-
|
| 84 |
-
with open('insight2_sent.txt', 'w') as f:
|
| 85 |
-
for item in sentences2:
|
| 86 |
-
f.write("%s\n" % item)
|
| 87 |
-
|
| 88 |
-
# Generate sentence embeddings for each sentence
|
| 89 |
-
sentence_embeddings1 = embedder.encode(sentences1)
|
| 90 |
-
sentence_embeddings2 = embedder.encode(sentences2)
|
| 91 |
-
all_embeddings = np.concatenate((sentence_embeddings1, sentence_embeddings2), axis=0)
|
| 92 |
-
|
| 93 |
-
# Normalize the embeddings to unit length
|
| 94 |
-
all_embeddings = all_embeddings / np.linalg.norm(all_embeddings, axis=1, keepdims=True)
|
| 95 |
-
|
| 96 |
-
# Perform kmean clustering
|
| 97 |
-
clustering_model = AgglomerativeClustering(n_clusters=None, distance_threshold=1.5)
|
| 98 |
-
clustering_model.fit(all_embeddings)
|
| 99 |
-
cluster_assignment = clustering_model.labels_
|
| 100 |
-
|
| 101 |
-
clustered_sentences = {}
|
| 102 |
-
for sentence_id, cluster_id in enumerate(cluster_assignment):
|
| 103 |
-
if cluster_id not in clustered_sentences:
|
| 104 |
-
clustered_sentences[cluster_id] = []
|
| 105 |
-
clustered_sentences[cluster_id].append(all_sentences[sentence_id])
|
| 106 |
-
|
| 107 |
-
return clustered_sentences
|
|
|
|
| 2 |
from keybert import KeyBERT
|
| 3 |
from nltk.corpus import stopwords
|
| 4 |
from transformers import AutoTokenizer
|
| 5 |
+
import os, re
|
| 6 |
+
import openai
|
| 7 |
import spacy
|
| 8 |
from sklearn.cluster import KMeans, AgglomerativeClustering
|
| 9 |
import numpy as np
|
|
|
|
| 13 |
|
| 14 |
@st.cache_data
|
| 15 |
def load_autotoken():
|
| 16 |
+
autotok = AutoTokenizer.from_pretrained('facebook/bart-large-mnli')
|
| 17 |
+
return autotok
|
| 18 |
|
| 19 |
@st.cache_data
|
| 20 |
def load_keyword_model():
|
|
|
|
| 24 |
|
| 25 |
@st.cache_data
|
| 26 |
def load_model():
|
| 27 |
+
embedder = SentenceTransformer(MODEL)
|
| 28 |
+
return embedder
|
| 29 |
|
| 30 |
def create_nest_sentences(document:str, token_max_length = 1023):
|
| 31 |
+
nested = []
|
| 32 |
+
sent = []
|
| 33 |
+
length = 0
|
| 34 |
+
tokenizer = load_autotoken()
|
| 35 |
+
|
| 36 |
+
for sentence in re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', document.replace("\n", '.')):
|
| 37 |
+
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer
|
| 38 |
+
length += len(tokens_in_sentence)
|
| 39 |
+
|
| 40 |
+
if length < token_max_length:
|
| 41 |
+
sent.append(sentence)
|
| 42 |
+
else:
|
| 43 |
+
nested.append(sent)
|
| 44 |
+
sent = [sentence]
|
| 45 |
+
length = 0
|
| 46 |
+
|
| 47 |
+
if sent:
|
| 48 |
+
nested.append(sent)
|
| 49 |
+
return nested
|
| 50 |
|
| 51 |
def preprocess(text) -> str:
|
| 52 |
+
stop_words = set(stopwords.words("english"))
|
| 53 |
+
text = text.lower()
|
| 54 |
+
# text = ''.join([c for c in text if c not in ('!', '.', ',', '?', ':', ';', '"', "'", '-', '(', ')')])
|
| 55 |
+
words = text.split()
|
| 56 |
+
words = [w for w in words if not w in stop_words]
|
| 57 |
+
return " ".join(words)
|
| 58 |
|
| 59 |
def generate_keywords(kw_model, document: str) -> list:
|
| 60 |
+
atomic_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 1), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
|
| 61 |
+
complex_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 2), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
|
| 62 |
+
final_topics = []
|
| 63 |
+
for extraction in atomic_extractions:
|
| 64 |
+
final_topics.append(extraction[0])
|
| 65 |
+
for extraction in complex_extractions:
|
| 66 |
+
final_topics.append(extraction[0])
|
| 67 |
+
return final_topics
|
| 68 |
+
|
| 69 |
+
def cluster_based_on_topics(embedder, text1:str, text2:str):
|
| 70 |
+
nlp = spacy.load("en_core_web_sm")
|
| 71 |
+
|
| 72 |
+
# Preprocess and tokenize the texts
|
| 73 |
+
doc1 = nlp(preprocess(text1))
|
| 74 |
+
doc2 = nlp(preprocess(text2))
|
| 75 |
+
|
| 76 |
+
# Extract sentences from the texts
|
| 77 |
+
sentences1 = [sent.text for sent in doc1.sents]
|
| 78 |
+
sentences2 = [sent.text for sent in doc2.sents]
|
| 79 |
+
all_sentences = sentences1 + sentences2
|
| 80 |
+
|
| 81 |
+
# Generate sentence embeddings for each sentence
|
| 82 |
+
sentence_embeddings1 = embedder.encode(sentences1)
|
| 83 |
+
sentence_embeddings2 = embedder.encode(sentences2)
|
| 84 |
+
all_embeddings = np.concatenate((sentence_embeddings1, sentence_embeddings2), axis=0)
|
| 85 |
+
|
| 86 |
+
# Normalize the embeddings to unit length
|
| 87 |
+
all_embeddings = all_embeddings / np.linalg.norm(all_embeddings, axis=1, keepdims=True)
|
| 88 |
+
|
| 89 |
+
# Perform agglomerative clustering
|
| 90 |
+
clustering_model = AgglomerativeClustering(n_clusters=None, distance_threshold=1.5)
|
| 91 |
+
clustering_model.fit(all_embeddings)
|
| 92 |
+
cluster_assignment = clustering_model.labels_
|
| 93 |
+
|
| 94 |
+
clustered_sentences = {}
|
| 95 |
+
for sentence_id, cluster_id in enumerate(cluster_assignment):
|
| 96 |
+
if cluster_id not in clustered_sentences:
|
| 97 |
+
clustered_sentences[cluster_id] = []
|
| 98 |
+
clustered_sentences[cluster_id].append(all_sentences[sentence_id])
|
| 99 |
+
|
| 100 |
+
return clustered_sentences
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def generate_insights(topics:dict, name1:str, name2:str, text1:str, text2:str, clusters) -> list:
|
| 104 |
+
|
| 105 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 106 |
+
|
| 107 |
+
PROMPT = open("insights.prompt", "r").read()
|
| 108 |
+
|
| 109 |
+
print(topics)
|
| 110 |
+
|
| 111 |
+
PROMPT = PROMPT.replace("{{name1}}", name1)
|
| 112 |
+
PROMPT = PROMPT.replace("{{name2}}", name2)
|
| 113 |
+
|
| 114 |
+
PROMPT = PROMPT.replace("{{topic1}}", ",".join(topics['insight1'][0]))
|
| 115 |
+
PROMPT = PROMPT.replace("{{topic2}}", ",".join(topics['insight2'][0]))
|
| 116 |
+
|
| 117 |
+
PROMPT = PROMPT.replace("{{complex1}}", ",".join(topics['insight1'][1]))
|
| 118 |
+
PROMPT = PROMPT.replace("{{complex2}}", ",".join(topics['insight2'][1]))
|
| 119 |
+
|
| 120 |
+
final_insights = []
|
| 121 |
+
|
| 122 |
+
for cluster_id, sentences in clusters.items():
|
| 123 |
+
|
| 124 |
+
PROMPT = PROMPT.replace("{{sentences}}", "\n".join(sentences))
|
| 125 |
+
|
| 126 |
+
with open(f"prompter/insights_{cluster_id}.prompt", "w") as f:
|
| 127 |
+
f.write(PROMPT)
|
| 128 |
+
|
| 129 |
+
# Generate insights for each cluster
|
| 130 |
+
response = openai.Completion.create(
|
| 131 |
+
model="text-davinci-003",
|
| 132 |
+
prompt=PROMPT,
|
| 133 |
+
temperature=0.5,
|
| 134 |
+
top_p=1,
|
| 135 |
+
max_tokens=1000,
|
| 136 |
+
frequency_penalty=0.0,
|
| 137 |
+
presence_penalty=0.0,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
text = response['choices'][0]['text']
|
| 141 |
+
with open(f"prompter/insights_{cluster_id}.txt", "a") as f:
|
| 142 |
+
f.write(text)
|
| 143 |
+
|
| 144 |
+
final_insights.append(text)
|
| 145 |
+
|
| 146 |
+
return final_insights
|
| 147 |
+
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|