text-matching / app.py
Keane Moraes
qol and description changes
15ea0fb
raw
history blame
2.4 kB
import streamlit as st
from topics import TopicModelling
import mdforest
import utils
import os
st.title("Welcome to Concepting")
col1, mid, col2 = st.columns([30,5,20])
with col1:
st.markdown("This is a demo of _one of the many_ use cases for an embedding of all your notes. This application lets you find **common ideas** between any two notes.")
st.markdown("You can upload two markdown files and the application will find the common ideas between them. It will generate insights based on the common ideas.")
st.markdown("**I will be building a better embedding model soon.** Stay tuned for updates. This is just a demo of what is possible with a good embedding model.")
with col2:
st.markdown("#### [Sign up for updates](https://embeddr.my.canva.site/)")
st.image("media/qrcode.png")
st.markdown("### Drop the first document")
file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first")
st.markdown("### Drop the second document")
file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second")
topics = {}
results = {}
embedder = utils.load_model()
nlp = utils.load_nlp()
if not os.path.exists("./prompter/"):
os.mkdir("./prompter/")
if file1 is not None and file2 is not None:
input_text1 = file1.read().decode("utf-8")
input_text2 = file2.read().decode("utf-8")
cleaned_text1 = mdforest.clean_markdown(input_text1)
cleaned_text2 = mdforest.clean_markdown(input_text2)
st.title("Generating insights")
with st.spinner('Generating insights...'):
insight1 = TopicModelling(cleaned_text1)
insight2 = TopicModelling(cleaned_text2)
keywords1, concepts1 = insight1.generate_topics()
topics['insight1'] = [keywords1, concepts1]
keywords2, concepts2 = insight2.generate_topics()
topics['insight2'] = [keywords2, concepts2]
with st.spinner("Flux capacitor is fluxing..."):
clutered = utils.cluster_based_on_topics(nlp, embedder, cleaned_text1, cleaned_text2, num_clusters=3)
with st.spinner("Polishing up"):
results = utils.generate_insights(topics, file1.name, file2.name, cleaned_text1, cleaned_text2, clutered)
st.success("Done!")
st.title("Insights generated")
for result in results:
with st.expander("See explanation"):
st.write(result)