import torch import pandas as pd import transformers import gradio as gr # def visualize_word(word, tokenizer, vecs, lm_head, count=5, contents=None): def visualize_word(word, count=10, remove_space=False): if not remove_space: word = ' ' + word print(f"Looking up word ['{word}']") # seems very dumb to have to load the tokenizer every time, but I don't know how to pass a non-interface element into the function in gradio tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2') vecs = torch.load("senses/all_vecs_mtx.pt") lm_head = torch.load("senses/lm_head.pt") print("lm_head.shape = ", lm_head.shape) token_ids = tokenizer(word)['input_ids'] tokens = [tokenizer.decode(token_id) for token_id in token_ids] tokens = ", ".join(tokens) # look up sense vectors only for the first token contents = vecs[token_ids[0]] # torch.Size([16, 768]) sense_names = [] pos_sense_word_lists = [] neg_sense_word_lists = [] for i in range(contents.shape[0]): logits = contents[i,:] @ lm_head.t() # (vocab,) [768] @ [768, 50257] -> [50257] sorted_logits, sorted_indices = torch.sort(logits, descending=True) sense_names.append('sense {}'.format(i)) # currently a lot of repetition pos_sorted_words = [tokenizer.decode(sorted_indices[j]) for j in range(count)] pos_sorted_logits = [sorted_logits[j].item() for j in range(count)] pos_word_list = list(zip(pos_sorted_words, pos_sorted_logits)) pos_sense_word_lists.append(pos_word_list) neg_sorted_words = [tokenizer.decode(sorted_indices[-j-1]) for j in range(count)] neg_sorted_logits = [sorted_logits[-j-1].item() for j in range(count)] neg_word_list = list(zip(neg_sorted_words, neg_sorted_logits)) neg_sense_word_lists.append(neg_word_list) pos_data = dict(zip(sense_names, pos_sense_word_lists)) pos_df = pd.DataFrame(index=[i for i in range(count)], columns=list(pos_data.keys())) for prop, word_list in pos_data.items(): for i, word_pair in enumerate(word_list): cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1]) pos_df.at[i, prop] = cell_value neg_data = dict(zip(sense_names, neg_sense_word_lists)) neg_df = pd.DataFrame(index=[i for i in range(count)], columns=list(neg_data.keys())) for prop, word_list in neg_data.items(): for i, word_pair in enumerate(word_list): cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1]) neg_df.at[i, prop] = cell_value return pos_df, neg_df, tokens with gr.Blocks() as demo: gr.Markdown(""" ## Backpack visualization: senses lookup > Note: Backpack uses the GPT-2 tokenizer, which includes the space before a word as part of the token, so by default, a space character `' '` is added to the beginning of the word you look up. You can disable this by checking `Remove space before word`, but know this might cause strange behaviors like breaking `afraid` into `af` and `raid`, or `slight` into `s` and `light`. """) with gr.Row(): word = gr.Textbox(label="Word") token_breakdown = gr.Textbox(label="Token Breakdown (senses are for the first token only)") remove_space = gr.Checkbox(label="Remove space before word", default=False) count = gr.Slider(minimum=1, maximum=20, value=10, label="Top K", step=1) # sentence = gr.Textbox(label="Sentence") pos_outputs = gr.Dataframe(label="Highest Scoring Senses") neg_outputs = gr.Dataframe(label="Lowest Scoring Senses") gr.Examples( examples=["science", "afraid", "book", "slight"], inputs=[word], outputs=[pos_outputs, neg_outputs, token_breakdown], fn=visualize_word, # cache_examples=True, ) gr.Button("Look up").click( fn=visualize_word, inputs= [word, count, remove_space], outputs= [pos_outputs, neg_outputs, token_breakdown], ) demo.launch(share=True)