Lora
commited on
Commit
·
0730e98
1
Parent(s):
440043c
minor instruction update
Browse files
app.py
CHANGED
@@ -244,9 +244,11 @@ def reset_weights(contextualization_weights):
|
|
244 |
contextualization_weights = None
|
245 |
return contextualization_weights
|
246 |
|
247 |
-
with gr.Blocks(
|
|
|
248 |
#sense8slider, #sense9slider, #sense1slider0, #sense11slider, #sense12slider, #sense13slider, #sense14slider, #sense15slider
|
249 |
-
{ height: 200px; width: 200px; transform: rotate(270deg); }"""
|
|
|
250 |
|
251 |
gr.Markdown("""
|
252 |
## Backpack Sense Visualization
|
@@ -259,21 +261,22 @@ with gr.Blocks( css = """#sense0slider, #sense1slider, #sense2slider, #sense3sli
|
|
259 |
top_k = gr.State(10)
|
260 |
with gr.Row():
|
261 |
with gr.Column(scale=8):
|
262 |
-
input_sentence = gr.Textbox(label="Input Sentence", placeholder='Enter a sentence and click "Predict next word"')
|
263 |
with gr.Column(scale=1):
|
264 |
predict = gr.Button(value="Predict next word", variant="primary")
|
265 |
reset_weights_button = gr.Button("Reset weights")
|
266 |
-
|
267 |
-
gr.
|
268 |
-
|
|
|
269 |
with gr.Row():
|
270 |
with gr.Column(scale=1):
|
271 |
selected_token = gr.Textbox(label="Current Selected Token", interactive=False)
|
272 |
with gr.Column(scale=8):
|
273 |
gr.Markdown("""#####
|
274 |
-
Once a token is chosen, you can use the sliders below to change the weights of any senses for that token, \
|
275 |
and then click "Predict next word" to see updated next-word predictions. \
|
276 |
-
You can change the weights of *multiple senses of multiple tokens
|
277 |
changes will be preserved until you click "Reset weights".
|
278 |
""")
|
279 |
# sense sliders and top sense words dataframes
|
@@ -296,21 +299,21 @@ with gr.Blocks( css = """#sense0slider, #sense1slider, #sense2slider, #sense3sli
|
|
296 |
sense7slider= gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Sense 7", elem_id="sense7slider", interactive=True)
|
297 |
with gr.Row():
|
298 |
with gr.Column(scale=0, min_width=120):
|
299 |
-
sense0words = gr.DataFrame()
|
300 |
with gr.Column(scale=0, min_width=120):
|
301 |
-
sense1words = gr.DataFrame()
|
302 |
with gr.Column(scale=0, min_width=120):
|
303 |
-
sense2words = gr.DataFrame()
|
304 |
with gr.Column(scale=0, min_width=120):
|
305 |
-
sense3words = gr.DataFrame()
|
306 |
with gr.Column(scale=0, min_width=120):
|
307 |
-
sense4words = gr.DataFrame()
|
308 |
with gr.Column(scale=0, min_width=120):
|
309 |
-
sense5words = gr.DataFrame()
|
310 |
with gr.Column(scale=0, min_width=120):
|
311 |
-
sense6words = gr.DataFrame()
|
312 |
with gr.Column(scale=0, min_width=120):
|
313 |
-
sense7words = gr.DataFrame()
|
314 |
with gr.Row():
|
315 |
with gr.Column(scale=0, min_width=120):
|
316 |
sense8slider= gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Sense 8", elem_id="sense8slider", interactive=True)
|
@@ -330,21 +333,21 @@ with gr.Blocks( css = """#sense0slider, #sense1slider, #sense2slider, #sense3sli
|
|
330 |
sense15slider= gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Sense 15", elem_id="sense15slider", interactive=True)
|
331 |
with gr.Row():
|
332 |
with gr.Column(scale=0, min_width=120):
|
333 |
-
sense8words = gr.DataFrame()
|
334 |
with gr.Column(scale=0, min_width=120):
|
335 |
-
sense9words = gr.DataFrame()
|
336 |
with gr.Column(scale=0, min_width=120):
|
337 |
-
sense10words = gr.DataFrame()
|
338 |
with gr.Column(scale=0, min_width=120):
|
339 |
-
sense11words = gr.DataFrame()
|
340 |
with gr.Column(scale=0, min_width=120):
|
341 |
-
sense12words = gr.DataFrame()
|
342 |
with gr.Column(scale=0, min_width=120):
|
343 |
-
sense13words = gr.DataFrame()
|
344 |
with gr.Column(scale=0, min_width=120):
|
345 |
-
sense14words = gr.DataFrame()
|
346 |
with gr.Column(scale=0, min_width=120):
|
347 |
-
sense15words = gr.DataFrame()
|
348 |
|
349 |
# gr.Examples(
|
350 |
# examples=[["Messi plays for", top_k, None]],
|
|
|
244 |
contextualization_weights = None
|
245 |
return contextualization_weights
|
246 |
|
247 |
+
with gr.Blocks( theme = gr.themes.Base(),
|
248 |
+
css = """#sense0slider, #sense1slider, #sense2slider, #sense3slider, #sense4slider, #sense5slider, #sense6slider, #sense7slider,
|
249 |
#sense8slider, #sense9slider, #sense1slider0, #sense11slider, #sense12slider, #sense13slider, #sense14slider, #sense15slider
|
250 |
+
{ height: 200px; width: 200px; transform: rotate(270deg); }"""
|
251 |
+
) as demo:
|
252 |
|
253 |
gr.Markdown("""
|
254 |
## Backpack Sense Visualization
|
|
|
261 |
top_k = gr.State(10)
|
262 |
with gr.Row():
|
263 |
with gr.Column(scale=8):
|
264 |
+
input_sentence = gr.Textbox(label="Input Sentence", placeholder='Enter a sentence and click "Predict next word". Then, you can go to the Tokens section, click on a token, and see its contextualization weights.')
|
265 |
with gr.Column(scale=1):
|
266 |
predict = gr.Button(value="Predict next word", variant="primary")
|
267 |
reset_weights_button = gr.Button("Reset weights")
|
268 |
+
gr.Markdown("""#### Top-k predicted next word""")
|
269 |
+
top_k_words = gr.Dataframe(interactive=False)
|
270 |
+
gr.Markdown("""### **Token Breakdown:** click on a token below to see its senses and contextualization weights""")
|
271 |
+
tokens = gr.DataFrame()
|
272 |
with gr.Row():
|
273 |
with gr.Column(scale=1):
|
274 |
selected_token = gr.Textbox(label="Current Selected Token", interactive=False)
|
275 |
with gr.Column(scale=8):
|
276 |
gr.Markdown("""#####
|
277 |
+
Once a token is chosen, you can **use the sliders below to change the weights of any senses** for that token, \
|
278 |
and then click "Predict next word" to see updated next-word predictions. \
|
279 |
+
You can change the weights of *multiple senses of multiple tokens;* \
|
280 |
changes will be preserved until you click "Reset weights".
|
281 |
""")
|
282 |
# sense sliders and top sense words dataframes
|
|
|
299 |
sense7slider= gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Sense 7", elem_id="sense7slider", interactive=True)
|
300 |
with gr.Row():
|
301 |
with gr.Column(scale=0, min_width=120):
|
302 |
+
sense0words = gr.DataFrame(headers = ["Sense 0"])
|
303 |
with gr.Column(scale=0, min_width=120):
|
304 |
+
sense1words = gr.DataFrame(headers = ["Sense 1"])
|
305 |
with gr.Column(scale=0, min_width=120):
|
306 |
+
sense2words = gr.DataFrame(headers = ["Sense 2"])
|
307 |
with gr.Column(scale=0, min_width=120):
|
308 |
+
sense3words = gr.DataFrame(headers = ["Sense 3"])
|
309 |
with gr.Column(scale=0, min_width=120):
|
310 |
+
sense4words = gr.DataFrame(headers = ["Sense 4"])
|
311 |
with gr.Column(scale=0, min_width=120):
|
312 |
+
sense5words = gr.DataFrame(headers = ["Sense 5"])
|
313 |
with gr.Column(scale=0, min_width=120):
|
314 |
+
sense6words = gr.DataFrame(headers = ["Sense 6"])
|
315 |
with gr.Column(scale=0, min_width=120):
|
316 |
+
sense7words = gr.DataFrame(headers = ["Sense 7"])
|
317 |
with gr.Row():
|
318 |
with gr.Column(scale=0, min_width=120):
|
319 |
sense8slider= gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Sense 8", elem_id="sense8slider", interactive=True)
|
|
|
333 |
sense15slider= gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Sense 15", elem_id="sense15slider", interactive=True)
|
334 |
with gr.Row():
|
335 |
with gr.Column(scale=0, min_width=120):
|
336 |
+
sense8words = gr.DataFrame(headers = ["Sense 8"])
|
337 |
with gr.Column(scale=0, min_width=120):
|
338 |
+
sense9words = gr.DataFrame(headers = ["Sense 9"])
|
339 |
with gr.Column(scale=0, min_width=120):
|
340 |
+
sense10words = gr.DataFrame(headers = ["Sense 10"])
|
341 |
with gr.Column(scale=0, min_width=120):
|
342 |
+
sense11words = gr.DataFrame(headers = ["Sense 11"])
|
343 |
with gr.Column(scale=0, min_width=120):
|
344 |
+
sense12words = gr.DataFrame(headers = ["Sense 12"])
|
345 |
with gr.Column(scale=0, min_width=120):
|
346 |
+
sense13words = gr.DataFrame(headers = ["Sense 13"])
|
347 |
with gr.Column(scale=0, min_width=120):
|
348 |
+
sense14words = gr.DataFrame(headers = ["Sense 14"])
|
349 |
with gr.Column(scale=0, min_width=120):
|
350 |
+
sense15words = gr.DataFrame(headers = ["Sense 15"])
|
351 |
|
352 |
# gr.Examples(
|
353 |
# examples=[["Messi plays for", top_k, None]],
|