File size: 3,769 Bytes
c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc e29168c c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc a4ce4a5 c289bbc a4ce4a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import torch
import pandas as pd
import transformers
import gradio as gr
def visualize_word(word, count=10, remove_space=False):
if not remove_space:
word = ' ' + word
print(f"Looking up word '{word}'...")
# very dumb to have to load the tokenizer every time, trying to figure out how to pass a non-interface element into the function in gradio
tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2')
vecs = torch.load("senses/all_vecs_mtx.pt")
lm_head = torch.load("senses/lm_head.pt")
token_ids = tokenizer(word)['input_ids']
tokens = [tokenizer.decode(token_id) for token_id in token_ids]
tokens = ", ".join(tokens) # display tokenization for user
print(f"Tokenized as: {tokens}")
# look up sense vectors only for the first token
contents = vecs[token_ids[0]] # torch.Size([16, 768])
# for pos and neg respectively, create a list (for each sense) of list (top k) of tuples (word, logit)
pos_word_lists = []
neg_word_lists = []
sense_names = [] # column header
for i in range(contents.shape[0]):
logits = contents[i,:] @ lm_head.t() # (vocab,) [768] @ [768, 50257] -> [50257]
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
sense_names.append('sense {}'.format(i))
pos_sorted_words = [tokenizer.decode(sorted_indices[j]) for j in range(count)]
pos_sorted_logits = [sorted_logits[j].item() for j in range(count)]
pos_word_lists.append(list(zip(pos_sorted_words, pos_sorted_logits)))
neg_sorted_words = [tokenizer.decode(sorted_indices[-j-1]) for j in range(count)]
neg_sorted_logits = [sorted_logits[-j-1].item() for j in range(count)]
neg_word_lists.append(list(zip(neg_sorted_words, neg_sorted_logits)))
def create_dataframe(word_lists, sense_names, count):
data = dict(zip(sense_names, word_lists))
df = pd.DataFrame(index=[i for i in range(count)],
columns=list(data.keys()))
for prop, word_list in data.items():
for i, word_pair in enumerate(word_list):
cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1])
df.at[i, prop] = cell_value
return df
pos_df = create_dataframe(pos_word_lists, sense_names, count)
neg_df = create_dataframe(neg_word_lists, sense_names, count)
return pos_df, neg_df, tokens
with gr.Blocks() as demo:
gr.Markdown("""
## Backpack visualization: senses lookup
> Note: Backpack uses the GPT-2 tokenizer, which includes the space before a word as part of the token, so by default, a space character `' '` is added to the beginning of the word you look up. You can disable this by checking `Remove space before word`, but know this might cause strange behaviors like breaking `afraid` into `af` and `raid`, or `slight` into `s` and `light`.
""")
with gr.Row():
word = gr.Textbox(label="Word")
token_breakdown = gr.Textbox(label="Token Breakdown (senses are for the first token only)")
remove_space = gr.Checkbox(label="Remove space before word", default=False)
count = gr.Slider(minimum=1, maximum=20, value=10, label="Top K", step=1)
pos_outputs = gr.Dataframe(label="Highest Scoring Senses")
neg_outputs = gr.Dataframe(label="Lowest Scoring Senses")
gr.Examples(
examples=["science", "afraid", "book", "slight"],
inputs=[word],
outputs=[pos_outputs, neg_outputs, token_breakdown],
fn=visualize_word,
cache_examples=True,
)
gr.Button("Look up").click(
fn=visualize_word,
inputs= [word, count, remove_space],
outputs= [pos_outputs, neg_outputs, token_breakdown],
)
demo.launch(auth=("caesar", "wins")) |