File size: 4,201 Bytes
a7dc99b
9b5b26a
 
 
c19d193
6aae614
8fe992b
a7dc99b
 
9b5b26a
 
5df72d6
9b5b26a
3d1237b
9b5b26a
 
 
 
 
 
 
 
a7dc99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
d2f6a24
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from smolagents import CodeAgent,DuckDuckGoSearchTool,HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from kaggle.api.kaggle_api_extended import KaggleApi

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"

@tool
def search_kaggle_datasets(search_term:str, kaggle_username=None:str, kaggle_key=None:str, max_results:int)-> str:
    """Search for datasets on Kaggle based on a search term.
    Args:
        search_term: The term to search for.
        kaggle_username: Your Kaggle username.
        kaggle_key: Your Kaggle API key.
        max_results: Maximum number of results to return.
    """
     # Initialize the Kaggle API
    api = KaggleApi()

    # Authenticate using provided credentials
    if kaggle_username and kaggle_key:
        # Create a temporary kaggle.json file
        kaggle_json_content = f'{{"username":"{kaggle_username}","key":"{kaggle_key}"}}'
        kaggle_json_path = os.path.expanduser("~/.kaggle/kaggle.json")
        os.makedirs(os.path.dirname(kaggle_json_path), exist_ok=True)
        with open(kaggle_json_path, "w") as f:
            f.write(kaggle_json_content)
        os.chmod(kaggle_json_path, 0o600)  # Set permissions to read/write for the owner only
    else:
        # Use the default kaggle.json file if no credentials are provided
        return 'Error in searching Kaggle datasets: No username or key provided.'

    api.authenticate()

    # Search for datasets
    datasets = api.dataset_list(search=search_term)

    # Limit the number of results
    datasets = datasets[:max_results]

    # Extract relevant information
    results = []
    for dataset in datasets:
        dataset_info = api.dataset_view(dataset)
        results.append({
            'title': dataset_info['title'],
            'url': f"https://www.kaggle.com/{dataset_info['ref']}",
            'size': dataset_info['size'],
            'files': dataset_info['files'],
            'last_updated': dataset_info['lastUpdated']
        })

    # Clean up the temporary kaggle.json file if it was created
    if kaggle_username and kaggle_key:
        os.remove(kaggle_json_path)

    return results


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()