Spaces:
Sleeping
Sleeping
File size: 4,201 Bytes
a7dc99b 9b5b26a c19d193 6aae614 8fe992b a7dc99b 9b5b26a 5df72d6 9b5b26a 3d1237b 9b5b26a a7dc99b 9b5b26a 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b d2f6a24 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
from smolagents import CodeAgent,DuckDuckGoSearchTool,HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from kaggle.api.kaggle_api_extended import KaggleApi
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def search_kaggle_datasets(search_term:str, kaggle_username=None:str, kaggle_key=None:str, max_results:int)-> str:
"""Search for datasets on Kaggle based on a search term.
Args:
search_term: The term to search for.
kaggle_username: Your Kaggle username.
kaggle_key: Your Kaggle API key.
max_results: Maximum number of results to return.
"""
# Initialize the Kaggle API
api = KaggleApi()
# Authenticate using provided credentials
if kaggle_username and kaggle_key:
# Create a temporary kaggle.json file
kaggle_json_content = f'{{"username":"{kaggle_username}","key":"{kaggle_key}"}}'
kaggle_json_path = os.path.expanduser("~/.kaggle/kaggle.json")
os.makedirs(os.path.dirname(kaggle_json_path), exist_ok=True)
with open(kaggle_json_path, "w") as f:
f.write(kaggle_json_content)
os.chmod(kaggle_json_path, 0o600) # Set permissions to read/write for the owner only
else:
# Use the default kaggle.json file if no credentials are provided
return 'Error in searching Kaggle datasets: No username or key provided.'
api.authenticate()
# Search for datasets
datasets = api.dataset_list(search=search_term)
# Limit the number of results
datasets = datasets[:max_results]
# Extract relevant information
results = []
for dataset in datasets:
dataset_info = api.dataset_view(dataset)
results.append({
'title': dataset_info['title'],
'url': f"https://www.kaggle.com/{dataset_info['ref']}",
'size': dataset_info['size'],
'files': dataset_info['files'],
'last_updated': dataset_info['lastUpdated']
})
# Clean up the temporary kaggle.json file if it was created
if kaggle_username and kaggle_key:
os.remove(kaggle_json_path)
return results
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |