Spaces:
Running
Running
Create constant.py
Browse files- constant.py +44 -0
constant.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LEADERBOARD_INTRODUCTION = """
|
2 |
+
# DD-Ranking Leaderboard
|
3 |
+
|
4 |
+
🏆 Welcome to the leaderboard of the **DD-Ranking**! [](https://github.com/NUS-HPC-AI-Lab/DD-Ranking)
|
5 |
+
|
6 |
+
**Join Leaderboard**: Please see the [instructions]() to participate.
|
7 |
+
"""
|
8 |
+
|
9 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
10 |
+
CITATION_BUTTON_TEXT = r"""
|
11 |
+
|
12 |
+
"""
|
13 |
+
|
14 |
+
IPC_INFO = """
|
15 |
+
Images Per Class
|
16 |
+
"""
|
17 |
+
|
18 |
+
LABEL_TYPE_INFO = """
|
19 |
+
Hard labels are categorical, having the same format of the real dataset. Soft labels are distributions, typically generated by a pre-trained teacher model.
|
20 |
+
"""
|
21 |
+
|
22 |
+
DATASET_LIST = ["CIFAR-10", "CIFAR-100", "Tiny-ImageNet"]
|
23 |
+
IPC_LIST = ["IPC-1", "IPC-10", "IPC-50"]
|
24 |
+
LABEL_TYPE_LIST = ["Hard Label", "Soft Label"]
|
25 |
+
|
26 |
+
COLUMN_NAMES = ["Method", "Verified", "Date", "Recovery", "Improvement", "Score"]
|
27 |
+
DATA_TITLE_TYPE = ['markdown', 'markdown', 'markdown', 'number', 'number', 'number']
|
28 |
+
|
29 |
+
DATASET_MAPPING = {
|
30 |
+
"CIFAR-10": 0,
|
31 |
+
"CIFAR-100": 1,
|
32 |
+
"Tiny-ImageNet": 2,
|
33 |
+
}
|
34 |
+
|
35 |
+
IPC_MAPPING = {
|
36 |
+
"IPC-1": 0,
|
37 |
+
"IPC-10": 1,
|
38 |
+
"IPC-50": 2,
|
39 |
+
}
|
40 |
+
|
41 |
+
LABEL_MAPPING = {
|
42 |
+
"Hard Label": 0,
|
43 |
+
"Soft Label": 1,
|
44 |
+
}
|