|
from fawkes.protection import Fawkes |
|
from fawkes.utils import Faces, reverse_process_cloaked |
|
from fawkes.differentiator import FawkesMaskGeneration |
|
import tensorflow as tf |
|
import numpy as np |
|
import gradio as gr |
|
|
|
IMG_SIZE = 112 |
|
PREPROCESS = 'raw' |
|
|
|
|
|
fwks_l = Fawkes("extractor_2", '0', 1, mode='low') |
|
fwks_m = Fawkes("extractor_2", '0', 1, mode='mid') |
|
fwks_h = Fawkes("extractor_2", '0', 1, mode='high') |
|
|
|
def generate_cloak_images(protector, image_X, target_emb=None): |
|
cloaked_image_X = protector.compute(image_X, target_emb) |
|
return cloaked_image_X |
|
|
|
def predict(img, level, th=0.04, sd=1e7, lr=10, max_step=500, batch_size=1, format='png', |
|
separate_target=True, debug=False, no_align=False, exp="", maximize=True, |
|
save_last_on_failed=True, progress=gr.Progress(track_tqdm=True)): |
|
|
|
img = img.convert('RGB') |
|
img = tf.keras.utils.img_to_array(img) |
|
|
|
if level == 'low': |
|
fwks = fwks_l |
|
elif level == 'mid': |
|
fwks = fwks_m |
|
elif level == 'high': |
|
fwks = fwks_h |
|
|
|
current_param = "-".join([str(x) for x in [fwks.th, sd, fwks.lr, fwks.max_step, batch_size, format, |
|
separate_target, debug]]) |
|
faces = Faces(['./Current Face'], [img], fwks.aligner, verbose=0, no_align=False) |
|
original_images = faces.cropped_faces |
|
|
|
if len(original_images) == 0: |
|
raise Exception("No face detected. ") |
|
original_images = np.array(original_images) |
|
|
|
if current_param != fwks.protector_param: |
|
fwks.protector_param = current_param |
|
if fwks.protector is not None: |
|
del fwks.protector |
|
if batch_size == -1: |
|
batch_size = len(original_images) |
|
fwks.protector = FawkesMaskGeneration(fwks.feature_extractors_ls, |
|
batch_size=batch_size, |
|
mimic_img=True, |
|
intensity_range=PREPROCESS, |
|
initial_const=sd, |
|
learning_rate=fwks.lr, |
|
max_iterations=fwks.max_step, |
|
l_threshold=fwks.th, |
|
verbose=0, |
|
maximize=maximize, |
|
keep_final=False, |
|
image_shape=(IMG_SIZE, IMG_SIZE, 3), |
|
loss_method='features', |
|
tanh_process=True, |
|
save_last_on_failed=save_last_on_failed, |
|
) |
|
protected_images = generate_cloak_images(fwks.protector, original_images) |
|
faces.cloaked_cropped_faces = protected_images |
|
|
|
final_images, _ = faces.merge_faces( |
|
reverse_process_cloaked(protected_images, preprocess=PREPROCESS), |
|
reverse_process_cloaked(original_images, preprocess=PREPROCESS)) |
|
|
|
return final_images[-1].astype(np.uint8) |
|
|
|
gr.Interface(fn=predict, inputs=[gr.components.Image(type='pil'), |
|
gr.components.Radio(["low", "mid", "high"], label="Protection Level")], |
|
outputs=gr.components.Image(type="numpy"), allow_flagging="never").launch(show_error=True, quiet=False) |
|
|