import gradio as gr import fitz # PyMuPDF import pandas as pd # Function to convert PDF to DataFrame def pdf_to_dataframe(pdf_path): # Open the PDF document doc = fitz.open(pdf_path) # Initialize an empty list to store text blocks text_blocks = [] # Iterate through each page in the PDF for page_num in range(len(doc)): page = doc.load_page(page_num) text = page.get_text("text") text_blocks.append(text) # Join all text blocks into a single string full_text = "\n".join(text_blocks) # Split the text into lines lines = full_text.split('\n') # Create a DataFrame from the lines df = pd.DataFrame(lines, columns=['Text']) return df # Function to save DataFrame to Excel def dataframe_to_excel(df, excel_path): # Save the DataFrame to an Excel file df.to_excel(excel_path, index=False) # Main function def main(): def pdf_to_excel_function(pdf_file): # Save the uploaded PDF to a temporary file pdf_path = "temp.pdf" with open(pdf_path, "wb") as f: f.write(pdf_file.read()) # Convert PDF to DataFrame df = pdf_to_dataframe(pdf_path) # Save DataFrame to Excel excel_path = "output.xlsx" dataframe_to_excel(df, excel_path) return excel_path # Create the Gradio interface iface = gr.Interface( fn=pdf_to_excel_function, inputs=gr.File(label="Upload PDF File"), outputs=gr.File[label="Download Excel File"], title="PDF to Excel Converter", description="Convert a PDF file to an Excel file." ) # Launch the interface iface.launch() if __name__ == "__main__": main()