Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,6 +17,9 @@ except:
|
|
| 17 |
|
| 18 |
stop_words = set(stopwords.words("english"))
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
def transcribe(audio_path):
|
| 21 |
with open(audio_path, "rb") as audio_file:
|
| 22 |
audio_data = audio_file.read()
|
|
@@ -46,16 +49,19 @@ def transcribe(audio_path):
|
|
| 46 |
return create_error_pdf(f"API Error: {error_msg}")
|
| 47 |
|
| 48 |
def extract_key_sentences(transcript):
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
important_sentences = [sentence for sentence in sentences if any(word.lower() not in stop_words for word in word_tokenize(sentence))]
|
| 51 |
-
top_sentences = sorted(important_sentences, key=lambda x: len(x), reverse=True)[:5]
|
| 52 |
return top_sentences
|
| 53 |
|
| 54 |
def generate_questions(sentences):
|
| 55 |
long_questions = [f"Explain the importance of: '{sentence}'." for sentence in sentences]
|
| 56 |
short_questions = [f"What does '{sentence.split()[0]}' refer to?" for sentence in sentences[:5]]
|
| 57 |
|
| 58 |
-
# Generate MCQs based on key terms
|
| 59 |
mcqs = []
|
| 60 |
for sentence in sentences[:5]:
|
| 61 |
words = [word for word in word_tokenize(sentence) if word.isalpha() and word.lower() not in stop_words]
|
|
|
|
| 17 |
|
| 18 |
stop_words = set(stopwords.words("english"))
|
| 19 |
|
| 20 |
+
def custom_sent_tokenize(text):
|
| 21 |
+
return text.split(". ")
|
| 22 |
+
|
| 23 |
def transcribe(audio_path):
|
| 24 |
with open(audio_path, "rb") as audio_file:
|
| 25 |
audio_data = audio_file.read()
|
|
|
|
| 49 |
return create_error_pdf(f"API Error: {error_msg}")
|
| 50 |
|
| 51 |
def extract_key_sentences(transcript):
|
| 52 |
+
try:
|
| 53 |
+
sentences = sent_tokenize(transcript)
|
| 54 |
+
except LookupError:
|
| 55 |
+
sentences = custom_sent_tokenize(transcript)
|
| 56 |
+
|
| 57 |
important_sentences = [sentence for sentence in sentences if any(word.lower() not in stop_words for word in word_tokenize(sentence))]
|
| 58 |
+
top_sentences = sorted(important_sentences, key=lambda x: len(x), reverse=True)[:5]
|
| 59 |
return top_sentences
|
| 60 |
|
| 61 |
def generate_questions(sentences):
|
| 62 |
long_questions = [f"Explain the importance of: '{sentence}'." for sentence in sentences]
|
| 63 |
short_questions = [f"What does '{sentence.split()[0]}' refer to?" for sentence in sentences[:5]]
|
| 64 |
|
|
|
|
| 65 |
mcqs = []
|
| 66 |
for sentence in sentences[:5]:
|
| 67 |
words = [word for word in word_tokenize(sentence) if word.isalpha() and word.lower() not in stop_words]
|