Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from fpdf import FPDF | |
import nltk | |
import os | |
import tempfile | |
from nltk.tokenize import sent_tokenize | |
import random | |
from groq import Groq | |
# Ensure no unexpected indentation here | |
api_key = os.environ.get("GROQ_API_KEY") | |
# Attempt to download punkt tokenizer | |
try: | |
nltk.download("punkt") | |
except: | |
print("NLTK punkt tokenizer download failed. Using custom tokenizer.") | |
def custom_sent_tokenize(text): | |
return text.split(". ") | |
def transcribe(audio_path): | |
with open(audio_path, "rb") as audio_file: | |
audio_data = audio_file.read() | |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions" | |
headers = { | |
"Authorization": f"Bearer {api_key}", # Fix: api_key is used properly | |
} | |
files = { | |
'file': ('audio.wav', audio_data, 'audio/wav'), | |
} | |
data = { | |
'model': 'whisper-large-v3-turbo', | |
'response_format': 'json', | |
'language': 'en', | |
} | |
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data) | |
if response.status_code == 200: | |
result = response.json() | |
transcript = result.get("text", "No transcription available.") | |
return generate_notes(transcript) | |
else: | |
error_msg = response.json().get("error", {}).get("message", "Unknown error.") | |
print(f"API Error: {error_msg}") | |
return create_error_pdf(f"API Error: {error_msg}") | |
def generate_notes(transcript): | |
client = Groq(api_key=api_key) # Use the api_key here | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "system", | |
"content": "you are expert question generator from content. Generate one long question, possible number of short questions and mcqs. plz also provide the notes" | |
}, | |
{ | |
"role": "user", | |
"content": transcript, | |
} | |
], | |
model="llama3-8b-8192", | |
temperature=0.5, | |
max_tokens=1024, | |
top_p=1, | |
stop=None, | |
stream=False, | |
) | |
res = chat_completion.choices[0].message.content | |
# Generate and save a structured PDF | |
pdf_path = create_pdf(res, transcript) | |
return pdf_path | |
def create_pdf(question, transcript): | |
pdf = FPDF() | |
pdf.add_page() | |
# Add title | |
pdf.set_font("Arial", "B", 16) | |
pdf.cell(200, 10, "Transcription Notes and Questions", ln=True, align="C") | |
# Add transcription content | |
pdf.set_font("Arial", "", 12) | |
pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n") | |
# Add long questions | |
pdf.set_font("Arial", "B", 14) | |
pdf.cell(200, 10, "Questions", ln=True) | |
pdf.set_font("Arial", "", 12) | |
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n") | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: | |
pdf.output(temp_pdf.name) | |
pdf_path = temp_pdf.name | |
return pdf_path | |
def create_error_pdf(message): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", "B", 16) | |
pdf.cell(200, 10, "Error Report", ln=True, align="C") | |
pdf.set_font("Arial", "", 12) | |
pdf.multi_cell(0, 10, message.encode('latin1', 'replace').decode('latin1')) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: | |
pdf.output(temp_pdf.name) | |
error_pdf_path = temp_pdf.name | |
return error_pdf_path | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.File(label="Download PDF with Notes or Error Report"), | |
title="Voice to Text Converter and Notes Generator", | |
description="This app converts audio to text and generates academic questions including long, short, and multiple-choice questions." | |
) | |
iface.launch() | |