Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from fpdf import FPDF | |
import nltk | |
from nltk.tokenize import sent_tokenize | |
import random | |
import os | |
# Ensure nltk resources are downloaded | |
nltk.download("punkt") | |
# Function to send audio to Groq API and get transcription | |
def transcribe(audio_path): | |
# Read audio file in binary mode | |
with open(audio_path, "rb") as audio_file: | |
audio_data = audio_file.read() | |
# Groq API endpoint for audio transcription | |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions" | |
headers = { | |
"Authorization": "Bearer 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", # Replace with your actual API key | |
} | |
files = { | |
'file': ('audio.wav', audio_data, 'audio/wav'), | |
} | |
data = { | |
'model': 'whisper-large-v3-turbo', | |
'response_format': 'json', | |
'language': 'en', | |
} | |
# Send audio to Groq API | |
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data) | |
if response.status_code == 200: | |
result = response.json() | |
transcript = result.get("text", "No transcription available.") | |
return generate_notes(transcript) | |
else: | |
error_msg = response.json().get("error", {}).get("message", "Unknown error.") | |
print(f"API Error: {error_msg}") | |
return None # Indicate failure | |
# Function to generate notes and questions | |
def generate_notes(transcript): | |
# Split transcript into sentences | |
sentences = sent_tokenize(transcript) | |
# Generate long and short questions | |
long_questions = [f"What is meant by '{sentence}'?" for sentence in sentences[:5]] | |
short_questions = [f"Define '{sentence.split()[0]}'." for sentence in sentences[:5]] | |
# Generate MCQs | |
mcqs = [] | |
for sentence in sentences[:5]: | |
mcq = { | |
"question": f"What is '{sentence.split()[0]}'?", | |
"options": [sentence.split()[0]] + random.sample(["Option 1", "Option 2", "Option 3"], 3), | |
"answer": sentence.split()[0] | |
} | |
mcqs.append(mcq) | |
# Create PDF | |
pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs) | |
return pdf_path | |
# Function to create and save PDF | |
def create_pdf(transcript, long_questions, short_questions, mcqs): | |
pdf = FPDF() | |
pdf.add_page() | |
# Title | |
pdf.set_font("Arial", "B", 16) | |
pdf.cell(200, 10, "Transcription Notes", ln=True, align="C") | |
# Transcription | |
pdf.set_font("Arial", "", 12) | |
pdf.multi_cell(0, 10, f"Transcription:\n{transcript}\n\n") | |
# Long Questions | |
pdf.set_font("Arial", "B", 14) | |
pdf.cell(200, 10, "Long Questions", ln=True) | |
pdf.set_font("Arial", "", 12) | |
for question in long_questions: | |
pdf.multi_cell(0, 10, f"- {question}\n") | |
# Short Questions | |
pdf.set_font("Arial", "B", 14) | |
pdf.cell(200, 10, "Short Questions", ln=True) | |
pdf.set_font("Arial", "", 12) | |
for question in short_questions: | |
pdf.multi_cell(0, 10, f"- {question}\n") | |
# MCQs | |
pdf.set_font("Arial", "B", 14) | |
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True) | |
pdf.set_font("Arial", "", 12) | |
for mcq in mcqs: | |
pdf.multi_cell(0, 10, f"Q: {mcq['question']}") | |
for option in mcq["options"]: | |
pdf.multi_cell(0, 10, f" - {option}") | |
pdf.multi_cell(0, 10, f"Answer: {mcq['answer']}\n") | |
# Save PDF | |
pdf_path = "/mnt/data/transcription_notes.pdf" | |
pdf.output(pdf_path) | |
return pdf_path | |
# Gradio interface | |
def gradio_interface(audio_path): | |
pdf_path = transcribe(audio_path) | |
if pdf_path: | |
return pdf_path | |
else: | |
return "Error: Unable to process the audio file. Please check the API key and try again." | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.File(label="Download PDF with Notes and Questions"), | |
title="Voice to Text Converter and Notes Generator", | |
) | |
iface.launch() | |