File size: 3,965 Bytes
e617194
 
 
 
 
 
11e2057
1ea5bb8
b0637c4
 
e617194
 
 
 
 
 
b0637c4
e617194
 
 
 
 
 
 
 
 
 
 
 
b0637c4
e617194
 
 
 
 
 
1ea5bb8
e617194
 
 
 
b0637c4
 
 
 
e617194
 
 
 
 
b0637c4
e617194
 
 
 
 
 
1ea5bb8
e617194
 
 
 
b0637c4
 
 
 
e617194
 
 
 
 
 
 
b0637c4
e617194
 
 
 
 
 
1ea5bb8
b0637c4
e617194
 
 
 
 
 
 
 
 
 
 
 
1ea5bb8
e617194
 
 
 
 
 
 
 
 
 
b0637c4
e617194
 
b0637c4
e617194
 
 
 
 
1ea5bb8
e617194
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import os
import zipfile
import numpy as np
from PIL import Image

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

def fn(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    image_size = im.size
    input_images = transform_image(im).unsqueeze(0).to("cuda")
    
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    
    im.putalpha(mask)
    output_file_path = os.path.join("output_images", "output_image_single.png")
    im.save(output_file_path)

    output_path = os.path.join("output_images", "output_image_processed.png")
    im.save(output_path, "PNG")
    
    return [im, mask], output_path

def fn_url(url):
    im = load_img(url, output_type="pil")
    im = im.convert("RGB")
    image_size = im.size
    input_images = transform_image(im).unsqueeze(0).to("cuda")
    
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    
    im.putalpha(mask)
    output_file_path = os.path.join("output_images", "output_image_url.png")
    im.save(output_file_path)

    output_path = os.path.join("output_images", "output_image_url_processed.png")
    im.save(output_path, "PNG")
    
    return [im, mask], output_path

def batch_fn(images):
    output_paths = []
    for idx, image_path in enumerate(images):
        im = load_img(image_path, output_type="pil")
        im = im.convert("RGB")
        image_size = im.size
        input_images = transform_image(im).unsqueeze(0).to("cuda")
        
        with torch.no_grad():
            preds = birefnet(input_images)[-1].sigmoid().cpu()
        pred = preds[0].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(image_size)
        
        im.putalpha(mask) 

        output_file_path = os.path.join("output_images", f"output_image_batch_{idx + 1}.png")
        im.save(output_file_path)
        output_paths.append(output_file_path)

    zip_file_path = os.path.join("output_images", "processed_images.zip")
    with zipfile.ZipFile(zip_file_path, 'w') as zipf:
        for file in output_paths:
            zipf.write(file, os.path.basename(file))

    return zip_file_path

batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple")

slider1 = ImageSlider(label="Processed Image", type="pil")
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
image = gr.Image(label="Upload an image")
text = gr.Textbox(label="Paste an image URL")

chameleon = load_img("chameleon.jpg", output_type="pil")
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"

tab1 = gr.Interface(
    fn, inputs=image, outputs=[slider1, gr.File(label="PNG Output")], examples=[chameleon], api_name="image"
)

tab2 = gr.Interface(fn_url, inputs=text, outputs=[slider2, gr.File(label="PNG Output")], examples=[url], api_name="text")

tab3 = gr.Interface(
    batch_fn, 
    inputs=batch_image, 
    outputs=gr.File(label="Download Processed Files"), 
    api_name="batch"
)

demo = gr.TabbedInterface(
    [tab1, tab2, tab3], ["image", "text", "batch"], title="Multi Birefnet for Background Removal"
)

if __name__ == "__main__":
    demo.launch()