File size: 5,285 Bytes
7ba7b65
 
 
 
 
 
 
 
 
 
 
0e5e09f
 
 
 
7ba7b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5e09f
 
7ba7b65
 
 
 
0e5e09f
 
7ba7b65
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import os 
import json 
import requests

#Streaming endpoint 
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"

#Testing with my Open AI Key 
#OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 

def predict(inputs, openai_api_key, chat_counter, chatbot=[], history=[]):  #repetition_penalty, top_k
    temperature = 1.0
    top_p = 1.0
    
    payload = {
    "model": "gpt-3.5-turbo",
    "messages": [{"role": "user", "content": f"{inputs}"}],
    "n" : 1,
    "stream": True,
    "presence_penalty":0,
    "frequency_penalty":0,
    }

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {openai_api_key}"
    }

    print(f"chat_counter - {chat_counter}")
    if chat_counter != 0 :
        messages=[]
        for data in chatbot:
          temp1 = {}
          temp1["role"] = "user" 
          temp1["content"] = data[0] 
          temp2 = {}
          temp2["role"] = "assistant" 
          temp2["content"] = data[1]
          messages.append(temp1)
          messages.append(temp2)
        temp3 = {}
        temp3["role"] = "user" 
        temp3["content"] = inputs
        messages.append(temp3)
        #messages
        payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages, #[{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }

    chat_counter+=1

    history.append(inputs)
    print(f"payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    #response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    token_counter = 0 
    partial_words = "" 

    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        #counter+=1
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              #if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
              #  break
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter  # resembles {chatbot: chat, state: history}  
                   

def reset_textbox():
    return gr.update(value='')

title = """<h1 align="center">ChatGPT API</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
"""
                
with gr.Blocks(css = """#col_container {margin-left: auto; margin-right: auto;}
                #chatbot {height: 520px; overflow: auto;}""") as demo:
    gr.HTML(title)
    #gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPTwithAPI?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
    with gr.Column(elem_id = "col_container"):
        openai_api_key = gr.Textbox(type='password', label="请输入您的 OpenAI API 密钥")
        chatbot = gr.Chatbot(elem_id='chatbot') #c
        inputs = gr.Textbox(placeholder= "你好!", label= "请输入您的问题并按Run发送") #t
        state = gr.State([]) #s
        b1 = gr.Button()
    
        #inputs, top_p, temperature, top_k, repetition_penalty
        with gr.Accordion("参数", open=False):
            # top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            # temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
            #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
            chat_counter = gr.Number(value=0, visible=False, precision=0)

    inputs.submit( predict, [inputs, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
    b1.click( predict, [inputs, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])
                    
    #gr.Markdown(description)
    demo.queue().launch(debug=True)