doberst commited on
Commit
84b4e7c
·
verified ·
1 Parent(s): 48c44b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -16,15 +16,15 @@ Our model training initiatives fall into four major categories:
16
 
17
  **SLIMs** - small, specialized function calling models for stacking in multi-model, Agent-based workflows -- [SLIMs](https://medium.com/@darrenoberst/slims-small-specialized-models-function-calling-and-multi-model-agents-8c935b341398)
18
  **BLING/DRAGON** - highly-accurate fact-based question-answering models
19
- -- [SMALL MODEL ACCURACY BENCHMARK](https://medium.com/@darrenoberst/best-small-language-models-for-accuracy-and-enterprise-use-cases-benchmark-results-cf71964759c8) |
20
- -- [OUR JOURNEY BUILDING ACCURATE ENTERPRISE SMALL MODELS](https://medium.com/@darrenoberst/building-the-most-accurate-small-language-models-our-journey-781474f64d88)
21
  **Industry-BERT** - industry fine-tuned embedding models
22
  **Private Inference** - Self-Hosting, Packaging and Quantization - GGUF, ONNX, OpenVino
23
 
24
  Please check out a few of our recent blog postings related to these initiatives:
25
- [THINKING DOES NOT HAPPEN ONE TOKEN AT A TIME](https://medium.com/@darrenoberst/thinking-does-not-happen-one-token-at-a-time-0dd0c6a528ec) |
26
- [RAG-INSTRUCT-TEST-DATASET](https://medium.com/@darrenoberst/how-accurate-is-rag-8f0706281fd9) |
27
- [LLMWARE EMERGING STACK](https://medium.com/@darrenoberst/the-emerging-llm-stack-for-rag-deee093af5fa) |
28
- [BECOMING A MASTER FINETUNING CHEF](https://medium.com/@darrenoberst/6-tips-to-becoming-a-master-llm-fine-tuning-chef-143ad735354b)
29
 
30
  Interested? [Join us on Discord](https://discord.gg/MhZn5Nc39h)
 
16
 
17
  **SLIMs** - small, specialized function calling models for stacking in multi-model, Agent-based workflows -- [SLIMs](https://medium.com/@darrenoberst/slims-small-specialized-models-function-calling-and-multi-model-agents-8c935b341398)
18
  **BLING/DRAGON** - highly-accurate fact-based question-answering models
19
+ -- [small model accuracy benchmark](https://medium.com/@darrenoberst/best-small-language-models-for-accuracy-and-enterprise-use-cases-benchmark-results-cf71964759c8) |
20
+ [our journey building small accurate language models](https://medium.com/@darrenoberst/building-the-most-accurate-small-language-models-our-journey-781474f64d88)
21
  **Industry-BERT** - industry fine-tuned embedding models
22
  **Private Inference** - Self-Hosting, Packaging and Quantization - GGUF, ONNX, OpenVino
23
 
24
  Please check out a few of our recent blog postings related to these initiatives:
25
+ [thinking does not happen one token at a time](https://medium.com/@darrenoberst/thinking-does-not-happen-one-token-at-a-time-0dd0c6a528ec) |
26
+ [rag instruct test dataset](https://medium.com/@darrenoberst/how-accurate-is-rag-8f0706281fd9) |
27
+ [llmware emerging stack](https://medium.com/@darrenoberst/the-emerging-llm-stack-for-rag-deee093af5fa) |
28
+ [becoming a master finetuning chef](https://medium.com/@darrenoberst/6-tips-to-becoming-a-master-llm-fine-tuning-chef-143ad735354b)
29
 
30
  Interested? [Join us on Discord](https://discord.gg/MhZn5Nc39h)