File size: 1,368 Bytes
ea61d35
 
 
 
 
 
 
 
 
2e31a14
14ddd88
542b976
60a524c
e912408
6e7f2b2
 
ad963c2
6e7f2b2
ad963c2
b705abc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
---
title: README
emoji: πŸ“š
colorFrom: purple
colorTo: blue
sdk: static
pinned: false
---

Welcome to the llmware HuggingFace page.   We believe that the ascendence of LLMs creates a major new application pattern and data 
pipelines that will be transformative in the enterprise, especially in knowledge-intensive industries.    Our open source research efforts 
are focused both on the new "ware" ("middleware" and "software" that will wrap and integrate LLMs), as well as designing 
automation-focused enterprise RAG models, including both industry-specific embedding models and instruction-focused generation models.

Please check out a few of our blog postings related to these initiatives:   
  [BLING](https://medium.com/@darrenoberst/small-instruct-following-llms-for-rag-use-case-54c55e4b41a8) | 
  [RAG-INSTRUCT-TEST-DATASET](https://medium.com/@darrenoberst/how-accurate-is-rag-8f0706281fd9) | 
  [LLMWARE EMERGING STACK](https://medium.com/@darrenoberst/the-emerging-llm-stack-for-rag-deee093af5fa) | 
  [MODEL SIZE TRENDS](https://medium.com/@darrenoberst/are-the-mega-llms-driving-the-future-or-they-already-in-the-past-c3b949f9f5a5) |
  [OPEN SOURCE RAG](https://medium.com/@darrenoberst/open-source-llms-in-rag-89d397b39511) |
  [1B-3B-7B LLM CAPABILITIES](https://medium.com/@darrenoberst/rag-instruct-capabilities-they-grow-up-so-fast-2647550cdc0a)