Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,71 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
-
import
|
4 |
-
|
5 |
-
from tensorflow.keras.datasets import mnist
|
6 |
-
|
7 |
-
# Functions for MNIST processing steps
|
8 |
-
def load_mnist():
|
9 |
-
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
10 |
-
return x_test, y_test
|
11 |
|
|
|
12 |
def get_grayscale(image):
|
13 |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
14 |
|
15 |
def thresholding(src):
|
16 |
-
return cv2.threshold(src, 127, 255, cv2.
|
17 |
-
|
18 |
-
def gaussian_blur(image):
|
19 |
-
return cv2.GaussianBlur(image, (5, 5), 0)
|
20 |
-
|
21 |
-
def edge_detection(image):
|
22 |
-
return cv2.Canny(image, 100, 200)
|
23 |
|
24 |
-
def
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
|
|
28 |
for step in steps:
|
29 |
if step == "Grayscale Conversion":
|
30 |
img = get_grayscale(img)
|
31 |
elif step == "Thresholding":
|
32 |
img = thresholding(img)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
fig, axes = plt.subplots(1, len(step_images), figsize=(15, 5))
|
46 |
-
for ax, (step, img) in zip(axes, step_images.items()):
|
47 |
-
ax.imshow(img, cmap='gray')
|
48 |
-
ax.set_title(step)
|
49 |
-
ax.axis('off')
|
50 |
-
|
51 |
-
plt.tight_layout()
|
52 |
-
plt.savefig('mnist_processing_steps.png')
|
53 |
-
return 'mnist_processing_steps.png'
|
54 |
|
55 |
# Interactive tutorial steps
|
56 |
tutorial_steps = [
|
57 |
"Grayscale Conversion",
|
58 |
-
"Thresholding"
|
59 |
-
"Gaussian Blur",
|
60 |
-
"Edge Detection"
|
61 |
]
|
62 |
|
63 |
# Interactive questions
|
64 |
questions = [
|
65 |
{
|
66 |
-
"question": "What is the first step in
|
67 |
-
"options": ["
|
68 |
"answer": "Grayscale Conversion"
|
69 |
},
|
70 |
{
|
71 |
-
"question": "What
|
72 |
-
"options": ["
|
73 |
-
"answer": "
|
74 |
},
|
75 |
{
|
76 |
-
"question": "
|
77 |
-
"options": ["
|
78 |
-
"answer": "
|
79 |
},
|
80 |
{
|
81 |
-
"question": "What
|
82 |
-
"options": ["
|
83 |
-
"answer": "
|
84 |
},
|
85 |
{
|
86 |
-
"question": "What
|
87 |
-
"options": ["
|
88 |
-
"answer": "
|
89 |
}
|
90 |
]
|
91 |
|
@@ -118,36 +98,34 @@ def quiz_interface():
|
|
118 |
|
119 |
# Explanation text
|
120 |
explanation_text = """
|
121 |
-
**Welcome to the
|
122 |
-
|
123 |
-
**Steps in the
|
124 |
-
1. **Grayscale Conversion:**
|
125 |
-
2. **Thresholding:**
|
126 |
-
3. **
|
127 |
-
4. **Edge Detection:** Detects the edges of the digits to enhance the features for further processing or recognition tasks.
|
128 |
**Interactive Tutorial:**
|
129 |
-
Please upload an
|
130 |
"""
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
output = gr.Image(type='file', label="Processing Steps Visualization")
|
136 |
explanation = gr.Markdown(explanation_text)
|
137 |
|
138 |
-
|
139 |
-
fn=
|
140 |
inputs=[image, steps],
|
141 |
outputs=output,
|
142 |
-
title="
|
143 |
description=explanation_text,
|
144 |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}"
|
145 |
)
|
146 |
|
147 |
quiz_app = gr.TabbedInterface(
|
148 |
-
[
|
149 |
-
["
|
150 |
-
title="
|
151 |
)
|
152 |
|
153 |
quiz_app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
+
import easyocr
|
4 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Functions for OCR steps
|
7 |
def get_grayscale(image):
|
8 |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
9 |
|
10 |
def thresholding(src):
|
11 |
+
return cv2.threshold(src, 127, 255, cv2.THRESH_TOZERO)[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def ocr_with_easy(img):
|
14 |
+
reader = easyocr.Reader(['en'])
|
15 |
+
bounds = reader.readtext(img, paragraph="False", detail=0)
|
16 |
+
bounds = ''.join(bounds)
|
17 |
+
return bounds
|
18 |
|
19 |
+
def process_image(img, steps):
|
20 |
for step in steps:
|
21 |
if step == "Grayscale Conversion":
|
22 |
img = get_grayscale(img)
|
23 |
elif step == "Thresholding":
|
24 |
img = thresholding(img)
|
25 |
+
cv2.imwrite('processed_image.png', img)
|
26 |
+
return 'processed_image.png'
|
27 |
+
|
28 |
+
def generate_ocr(img, steps):
|
29 |
+
text_output = ''
|
30 |
+
if img is not None and (img).any():
|
31 |
+
processed_image_path = process_image(img, steps)
|
32 |
+
text_output = ocr_with_easy(processed_image_path)
|
33 |
+
else:
|
34 |
+
raise gr.Error("Please upload an image and select the processing steps!")
|
35 |
+
return text_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Interactive tutorial steps
|
38 |
tutorial_steps = [
|
39 |
"Grayscale Conversion",
|
40 |
+
"Thresholding"
|
|
|
|
|
41 |
]
|
42 |
|
43 |
# Interactive questions
|
44 |
questions = [
|
45 |
{
|
46 |
+
"question": "What is the first step in OCR?",
|
47 |
+
"options": ["Binarization", "Grayscale Conversion", "Edge Detection"],
|
48 |
"answer": "Grayscale Conversion"
|
49 |
},
|
50 |
{
|
51 |
+
"question": "What is the purpose of thresholding in OCR?",
|
52 |
+
"options": ["To detect edges", "To convert image to grayscale", "To binarize the image"],
|
53 |
+
"answer": "To binarize the image"
|
54 |
},
|
55 |
{
|
56 |
+
"question": "Which library is used for OCR in this app?",
|
57 |
+
"options": ["Tesseract", "EasyOCR", "OpenCV"],
|
58 |
+
"answer": "EasyOCR"
|
59 |
},
|
60 |
{
|
61 |
+
"question": "What format is the image saved in after preprocessing?",
|
62 |
+
"options": ["JPG", "PNG", "TIFF"],
|
63 |
+
"answer": "PNG"
|
64 |
},
|
65 |
{
|
66 |
+
"question": "What does OCR stand for?",
|
67 |
+
"options": ["Optical Character Recognition", "Optical Character Reading", "Optical Code Recognition"],
|
68 |
+
"answer": "Optical Character Recognition"
|
69 |
}
|
70 |
]
|
71 |
|
|
|
98 |
|
99 |
# Explanation text
|
100 |
explanation_text = """
|
101 |
+
**Welcome to the OCR Tutorial!**
|
102 |
+
Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files, or images captured by a digital camera, into editable and searchable data.
|
103 |
+
**Steps in the OCR Process:**
|
104 |
+
1. **Grayscale Conversion:** The first step in OCR is converting the image to grayscale. This simplifies the image and reduces the amount of data the OCR algorithm needs to process.
|
105 |
+
2. **Thresholding:** This step converts the grayscale image into a binary image, where the text is in black, and the background is in white. This makes it easier for the OCR algorithm to distinguish text from the background.
|
106 |
+
3. **OCR using EasyOCR:** We use the EasyOCR library to recognize and extract text from the preprocessed image.
|
|
|
107 |
**Interactive Tutorial:**
|
108 |
+
Please upload an image and select the correct order of steps to perform OCR.
|
109 |
"""
|
110 |
|
111 |
+
image = gr.Image()
|
112 |
+
steps = gr.CheckboxGroup(choices=tutorial_steps, label="Select and order the steps for OCR")
|
113 |
+
output = gr.Textbox(label="OCR Output")
|
|
|
114 |
explanation = gr.Markdown(explanation_text)
|
115 |
|
116 |
+
ocr_app = gr.Interface(
|
117 |
+
fn=generate_ocr,
|
118 |
inputs=[image, steps],
|
119 |
outputs=output,
|
120 |
+
title="Optical Character Recognition",
|
121 |
description=explanation_text,
|
122 |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}"
|
123 |
)
|
124 |
|
125 |
quiz_app = gr.TabbedInterface(
|
126 |
+
[ocr_app] + quiz_interface(),
|
127 |
+
["OCR Tool"] + [f"Question {i+1}" for i in range(len(questions))],
|
128 |
+
title="OCR Tutorial and Quiz"
|
129 |
)
|
130 |
|
131 |
quiz_app.launch()
|