File size: 4,600 Bytes
f0a9ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from typing import TypedDict, Annotated, List
from typing_extensions import List, TypedDict

from dotenv import load_dotenv
import chainlit as cl
import operator

from langchain.prompts import ChatPromptTemplate
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_cohere import CohereRerank
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.tools.arxiv.tool import ArxivQueryRun
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.documents import Document
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_qdrant import QdrantVectorStore
from langgraph.graph import START, StateGraph, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams

load_dotenv()

path = "data/"
loader = DirectoryLoader(path, glob="*.html")
docs = loader.load()

tavily_tool = TavilySearchResults(max_results=5)
arxiv_tool = ArxivQueryRun()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=750, chunk_overlap=100)
split_documents = text_splitter.split_documents(docs)

embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

client = QdrantClient(":memory:")

client.create_collection(
    collection_name="ai_across_years",
    vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)

vector_store = QdrantVectorStore(
    client=client,
    collection_name="ai_across_years",
    embedding=embeddings,
)

_ = vector_store.add_documents(documents=split_documents)

retriever = vector_store.as_retriever(search_kwargs={"k": 5})

def retrieve(state):
  retrieved_docs = retriever.invoke(state["question"])
  return {"context" : retrieved_docs}

RAG_PROMPT = """\
You are a helpful assistant who answers questions based on provided context. You must only use the provided context, and cannot use your own knowledge.

### Question
{question}

### Context
{context}
"""

rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)

llm = ChatOpenAI(model="gpt-4o-mini")

def generate(state):
  docs_content = "\n\n".join(doc.page_content for doc in state["context"])
  messages = rag_prompt.format_messages(question=state["question"], context=docs_content)
  response = llm.invoke(messages)
  return {"response" : response.content}

from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
from langchain_core.documents import Document

class State(TypedDict):
  question: str
  context: List[Document]
  response: str

graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()

@tool
def ai_rag_tool(question: str) -> str:
  """Useful for when you need to answer questions about artificial intelligence. Input should be a fully formed question."""
  response = graph.invoke({"question" : question})
  return {
        "messages": [HumanMessage(content=response["response"])],
        "context": response["context"]
    }

tool_belt = [
    tavily_tool,
    arxiv_tool,
    ai_rag_tool
]

model = ChatOpenAI(model="gpt-4o", temperature=0)
model = model.bind_tools(tool_belt)

class AgentState(TypedDict):
  messages: Annotated[list, add_messages]
  context: List[Document]

tool_node = ToolNode(tool_belt)

uncompiled_graph = StateGraph(AgentState)

def call_model(state):
  messages = state["messages"]
  response = model.invoke(messages)
  return {
        "messages": [response],
        "context": state.get("context", [])
    }

uncompiled_graph.add_node("agent", call_model)
uncompiled_graph.add_node("action", tool_node)

uncompiled_graph.set_entry_point("agent")

def should_continue(state):
  last_message = state["messages"][-1]

  if last_message.tool_calls:
    return "action"

  return END

uncompiled_graph.add_conditional_edges(
    "agent",
    should_continue
)

uncompiled_graph.add_edge("action", "agent")

compiled_graph = uncompiled_graph.compile()

@cl.on_chat_start
async def start():
  cl.user_session.set("graph", compiled_graph)

@cl.on_message
async def handle(message: cl.Message):
  graph = cl.user_session.get("graph")
  state = {"messages" : [HumanMessage(content=message.content)]}
  response = await graph.ainvoke(state)
  await cl.Message(content=response["messages"][-1].content).send()