sh1gechan commited on
Commit
afddb33
·
verified ·
1 Parent(s): b7de7ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -51
app.py CHANGED
@@ -295,50 +295,6 @@ with demo:
295
 
296
  initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
297
  leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
298
-
299
- # 重複カラムの確認と削除
300
- duplicate_columns = leaderboard_df_filtered.columns[leaderboard_df_filtered.columns.duplicated()]
301
- if len(duplicate_columns) > 0:
302
- print(f"Duplicate columns found: {duplicate_columns.tolist()}")
303
- # 重複カラムを削除(最初の出現を保持)
304
- leaderboard_df_filtered = leaderboard_df_filtered.loc[:, ~leaderboard_df_filtered.columns.duplicated()]
305
- print("Duplicate columns have been removed.")
306
- else:
307
- print("No duplicate columns found.")
308
-
309
- # 'T' カラムの欠損値を確認
310
- missing_T = leaderboard_df_filtered['T'].isna().sum()
311
- print(f"Number of rows with missing 'T': {missing_T}")
312
-
313
- # 'T' カラムが欠損している場合、埋める(ここでは空文字)
314
- if missing_T > 0:
315
- print("Filling missing 'T' values with empty strings.")
316
- leaderboard_df_filtered['T'] = leaderboard_df_filtered['T'].fillna('')
317
-
318
- # データ型を定義
319
- datatype_dict = {}
320
- for col in leaderboard_df_filtered.columns:
321
- if col == AutoEvalColumn.model.name: # 'Model'
322
- datatype_dict[col] = "markdown"
323
- elif col in TYPES:
324
- datatype_dict[col] = TYPES[col]
325
- else:
326
- datatype_dict[col] = "str" # デフォルトのデータ型
327
-
328
- # 'T' カラムがすべてのレコードに存在するか確認
329
- records = leaderboard_df_filtered.to_dict('records')
330
- missing_T_in_records = [i for i, record in enumerate(records) if 'T' not in record]
331
- print(f"Number of records missing 'T' key: {len(missing_T_in_records)}")
332
-
333
- if len(missing_T_in_records) > 0:
334
- print("Records missing 'T' key:")
335
- for i in missing_T_in_records[:5]: # 最初の5件のみ表示
336
- print(f"Record {i}: {records[i]}")
337
- # 欠損している場合、'T' キーを追加して空文字で埋める
338
- for i in missing_T_in_records:
339
- records[i]['T'] = ''
340
- # データフレームを更新
341
- leaderboard_df_filtered = pd.DataFrame(records)
342
 
343
 
344
  leaderboard_df_filtered = leaderboard_df_filtered.rename(columns={'T': 'Type_'})
@@ -350,12 +306,6 @@ with demo:
350
  # 'Type_' カラムを文字列型に変換
351
  leaderboard_df_filtered['Type_'] = leaderboard_df_filtered['Type_'].astype(str)
352
 
353
- # 'COLS' リストから 'T' と 'Model' を除外
354
- if 'T' in COLS:
355
- COLS.remove('T')
356
- if 'Model' in COLS:
357
- COLS.remove('Model')
358
-
359
  # datatypeを準備
360
  datatype_dict = {}
361
  for col in leaderboard_df_filtered.columns:
@@ -365,7 +315,8 @@ with demo:
365
  datatype_dict[col] = TYPES[col]
366
  else:
367
  datatype_dict[col] = "str" # デフォルトのデータ型
368
-
 
369
 
370
  # 'Type_' が 'datatype_dict' に含まれているか確認
371
  if 'Type_' not in datatype_dict:
 
295
 
296
  initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
297
  leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
 
299
 
300
  leaderboard_df_filtered = leaderboard_df_filtered.rename(columns={'T': 'Type_'})
 
306
  # 'Type_' カラムを文字列型に変換
307
  leaderboard_df_filtered['Type_'] = leaderboard_df_filtered['Type_'].astype(str)
308
 
 
 
 
 
 
 
309
  # datatypeを準備
310
  datatype_dict = {}
311
  for col in leaderboard_df_filtered.columns:
 
315
  datatype_dict[col] = TYPES[col]
316
  else:
317
  datatype_dict[col] = "str" # デフォルトのデータ型
318
+
319
+ datatype_dict['Type_'] = "str"
320
 
321
  # 'Type_' が 'datatype_dict' に含まれているか確認
322
  if 'Type_' not in datatype_dict: