Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -295,50 +295,6 @@ with demo:
|
|
295 |
|
296 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
297 |
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
|
298 |
-
|
299 |
-
# 重複カラムの確認と削除
|
300 |
-
duplicate_columns = leaderboard_df_filtered.columns[leaderboard_df_filtered.columns.duplicated()]
|
301 |
-
if len(duplicate_columns) > 0:
|
302 |
-
print(f"Duplicate columns found: {duplicate_columns.tolist()}")
|
303 |
-
# 重複カラムを削除(最初の出現を保持)
|
304 |
-
leaderboard_df_filtered = leaderboard_df_filtered.loc[:, ~leaderboard_df_filtered.columns.duplicated()]
|
305 |
-
print("Duplicate columns have been removed.")
|
306 |
-
else:
|
307 |
-
print("No duplicate columns found.")
|
308 |
-
|
309 |
-
# 'T' カラムの欠損値を確認
|
310 |
-
missing_T = leaderboard_df_filtered['T'].isna().sum()
|
311 |
-
print(f"Number of rows with missing 'T': {missing_T}")
|
312 |
-
|
313 |
-
# 'T' カラムが欠損している場合、埋める(ここでは空文字)
|
314 |
-
if missing_T > 0:
|
315 |
-
print("Filling missing 'T' values with empty strings.")
|
316 |
-
leaderboard_df_filtered['T'] = leaderboard_df_filtered['T'].fillna('')
|
317 |
-
|
318 |
-
# データ型を定義
|
319 |
-
datatype_dict = {}
|
320 |
-
for col in leaderboard_df_filtered.columns:
|
321 |
-
if col == AutoEvalColumn.model.name: # 'Model'
|
322 |
-
datatype_dict[col] = "markdown"
|
323 |
-
elif col in TYPES:
|
324 |
-
datatype_dict[col] = TYPES[col]
|
325 |
-
else:
|
326 |
-
datatype_dict[col] = "str" # デフォルトのデータ型
|
327 |
-
|
328 |
-
# 'T' カラムがすべてのレコードに存在するか確認
|
329 |
-
records = leaderboard_df_filtered.to_dict('records')
|
330 |
-
missing_T_in_records = [i for i, record in enumerate(records) if 'T' not in record]
|
331 |
-
print(f"Number of records missing 'T' key: {len(missing_T_in_records)}")
|
332 |
-
|
333 |
-
if len(missing_T_in_records) > 0:
|
334 |
-
print("Records missing 'T' key:")
|
335 |
-
for i in missing_T_in_records[:5]: # 最初の5件のみ表示
|
336 |
-
print(f"Record {i}: {records[i]}")
|
337 |
-
# 欠損している場合、'T' キーを追加して空文字で埋める
|
338 |
-
for i in missing_T_in_records:
|
339 |
-
records[i]['T'] = ''
|
340 |
-
# データフレームを更新
|
341 |
-
leaderboard_df_filtered = pd.DataFrame(records)
|
342 |
|
343 |
|
344 |
leaderboard_df_filtered = leaderboard_df_filtered.rename(columns={'T': 'Type_'})
|
@@ -350,12 +306,6 @@ with demo:
|
|
350 |
# 'Type_' カラムを文字列型に変換
|
351 |
leaderboard_df_filtered['Type_'] = leaderboard_df_filtered['Type_'].astype(str)
|
352 |
|
353 |
-
# 'COLS' リストから 'T' と 'Model' を除外
|
354 |
-
if 'T' in COLS:
|
355 |
-
COLS.remove('T')
|
356 |
-
if 'Model' in COLS:
|
357 |
-
COLS.remove('Model')
|
358 |
-
|
359 |
# datatypeを準備
|
360 |
datatype_dict = {}
|
361 |
for col in leaderboard_df_filtered.columns:
|
@@ -365,7 +315,8 @@ with demo:
|
|
365 |
datatype_dict[col] = TYPES[col]
|
366 |
else:
|
367 |
datatype_dict[col] = "str" # デフォルトのデータ型
|
368 |
-
|
|
|
369 |
|
370 |
# 'Type_' が 'datatype_dict' に含まれているか確認
|
371 |
if 'Type_' not in datatype_dict:
|
|
|
295 |
|
296 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
297 |
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
|
300 |
leaderboard_df_filtered = leaderboard_df_filtered.rename(columns={'T': 'Type_'})
|
|
|
306 |
# 'Type_' カラムを文字列型に変換
|
307 |
leaderboard_df_filtered['Type_'] = leaderboard_df_filtered['Type_'].astype(str)
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
# datatypeを準備
|
310 |
datatype_dict = {}
|
311 |
for col in leaderboard_df_filtered.columns:
|
|
|
315 |
datatype_dict[col] = TYPES[col]
|
316 |
else:
|
317 |
datatype_dict[col] = "str" # デフォルトのデータ型
|
318 |
+
|
319 |
+
datatype_dict['Type_'] = "str"
|
320 |
|
321 |
# 'Type_' が 'datatype_dict' に含まれているか確認
|
322 |
if 'Type_' not in datatype_dict:
|