sh1gechan commited on
Commit
90452c5
·
verified ·
1 Parent(s): 321e9aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -3
app.py CHANGED
@@ -129,12 +129,17 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
129
  def filter_models(
130
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
131
  ) -> pd.DataFrame:
 
 
 
132
  # Show all models
133
  if show_deleted:
134
  filtered_df = df
135
  else: # Show only still on the hub models
136
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
137
 
 
 
138
  #if not show_merges:
139
  # filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
140
 
@@ -143,15 +148,30 @@ def filter_models(
143
 
144
  type_emoji = [t[0] for t in type_query]
145
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
146
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
147
- filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
148
- filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
 
 
 
149
 
150
 
151
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
152
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
153
  mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
154
  filtered_df = filtered_df.loc[mask]
 
 
 
 
 
 
 
 
 
 
 
 
155
  return filtered_df
156
 
157
  leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
 
129
  def filter_models(
130
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
131
  ) -> pd.DataFrame:
132
+ print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}")
133
+ print(f"Initial df shape: {df.shape}")
134
+
135
  # Show all models
136
  if show_deleted:
137
  filtered_df = df
138
  else: # Show only still on the hub models
139
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
140
 
141
+ print(f"After deletion filter: {filtered_df.shape}")
142
+
143
  #if not show_merges:
144
  # filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
145
 
 
148
 
149
  type_emoji = [t[0] for t in type_query]
150
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
151
+ if 'Unknown' not in precision_query:
152
+ precision_query.append('Unknown')
153
+ filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.precision.name].isin(precision_query)]
154
+ filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query + ["Unknown"])]
155
+ filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query + ["Unknown"])]
156
+ print(f"After num_few_shots filter: {filtered_df.shape}")
157
 
158
 
159
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
160
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
161
  mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
162
  filtered_df = filtered_df.loc[mask]
163
+ print(f"After size filter: {filtered_df.shape}")
164
+ print("Filtered dataframe head:")
165
+ print(filtered_df.head())
166
+ print("Column names:")
167
+ print(filtered_df.columns.tolist())
168
+ print("Column data types:")
169
+ print(filtered_df.dtypes)
170
+ filtered_df = filtered_df.rename(columns={'T': 'Type_Symbol'})
171
+ print("Final filtered dataframe columns:")
172
+ print(filtered_df.columns.tolist())
173
+ print("Final filtered dataframe sample:")
174
+ print(filtered_df.head().to_dict('records'))
175
  return filtered_df
176
 
177
  leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)