Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -129,12 +129,17 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
129 |
def filter_models(
|
130 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
131 |
) -> pd.DataFrame:
|
|
|
|
|
|
|
132 |
# Show all models
|
133 |
if show_deleted:
|
134 |
filtered_df = df
|
135 |
else: # Show only still on the hub models
|
136 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
137 |
|
|
|
|
|
138 |
#if not show_merges:
|
139 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
140 |
|
@@ -143,15 +148,30 @@ def filter_models(
|
|
143 |
|
144 |
type_emoji = [t[0] for t in type_query]
|
145 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
146 |
-
|
147 |
-
|
148 |
-
filtered_df = filtered_df.loc[
|
|
|
|
|
|
|
149 |
|
150 |
|
151 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
152 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
153 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
154 |
filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
return filtered_df
|
156 |
|
157 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
|
129 |
def filter_models(
|
130 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
131 |
) -> pd.DataFrame:
|
132 |
+
print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}")
|
133 |
+
print(f"Initial df shape: {df.shape}")
|
134 |
+
|
135 |
# Show all models
|
136 |
if show_deleted:
|
137 |
filtered_df = df
|
138 |
else: # Show only still on the hub models
|
139 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
140 |
|
141 |
+
print(f"After deletion filter: {filtered_df.shape}")
|
142 |
+
|
143 |
#if not show_merges:
|
144 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
145 |
|
|
|
148 |
|
149 |
type_emoji = [t[0] for t in type_query]
|
150 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
151 |
+
if 'Unknown' not in precision_query:
|
152 |
+
precision_query.append('Unknown')
|
153 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.precision.name].isin(precision_query)]
|
154 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query + ["Unknown"])]
|
155 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query + ["Unknown"])]
|
156 |
+
print(f"After num_few_shots filter: {filtered_df.shape}")
|
157 |
|
158 |
|
159 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
160 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
161 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
162 |
filtered_df = filtered_df.loc[mask]
|
163 |
+
print(f"After size filter: {filtered_df.shape}")
|
164 |
+
print("Filtered dataframe head:")
|
165 |
+
print(filtered_df.head())
|
166 |
+
print("Column names:")
|
167 |
+
print(filtered_df.columns.tolist())
|
168 |
+
print("Column data types:")
|
169 |
+
print(filtered_df.dtypes)
|
170 |
+
filtered_df = filtered_df.rename(columns={'T': 'Type_Symbol'})
|
171 |
+
print("Final filtered dataframe columns:")
|
172 |
+
print(filtered_df.columns.tolist())
|
173 |
+
print("Final filtered dataframe sample:")
|
174 |
+
print(filtered_df.head().to_dict('records'))
|
175 |
return filtered_df
|
176 |
|
177 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|