Update app.py
Browse files
app.py
CHANGED
|
@@ -63,6 +63,38 @@ leaderboard_df = original_df.copy()
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def update_table(
|
| 67 |
hidden_df: pd.DataFrame,
|
| 68 |
columns: list,
|
|
@@ -93,8 +125,13 @@ def update_table(
|
|
| 93 |
print(f"Final df shape: {df.shape}")
|
| 94 |
print("Final dataframe head:")
|
| 95 |
print(df.head())
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 100 |
query = request.query_params.get("query") or ""
|
|
@@ -272,7 +309,8 @@ with demo:
|
|
| 272 |
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 273 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
| 274 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
| 275 |
-
|
|
|
|
| 276 |
# leaderboard_table = gr.components.Dataframe(
|
| 277 |
# value=leaderboard_df_filtered,
|
| 278 |
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
|
@@ -282,9 +320,9 @@ with demo:
|
|
| 282 |
# visible=True,
|
| 283 |
# )
|
| 284 |
leaderboard_table = gr.components.Dataframe(
|
| 285 |
-
value=leaderboard_df_filtered,
|
| 286 |
headers=list(leaderboard_df_filtered.columns),
|
| 287 |
-
datatype=
|
| 288 |
elem_id="leaderboard-table",
|
| 289 |
interactive=False,
|
| 290 |
visible=True,
|
|
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
| 66 |
+
# def update_table(
|
| 67 |
+
# hidden_df: pd.DataFrame,
|
| 68 |
+
# columns: list,
|
| 69 |
+
# type_query: list,
|
| 70 |
+
# precision_query: str,
|
| 71 |
+
# size_query: list,
|
| 72 |
+
# add_special_tokens_query: list,
|
| 73 |
+
# num_few_shots_query: list,
|
| 74 |
+
# show_deleted: bool,
|
| 75 |
+
# show_merges: bool,
|
| 76 |
+
# show_flagged: bool,
|
| 77 |
+
# query: str,
|
| 78 |
+
# ):
|
| 79 |
+
# print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
| 80 |
+
# print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 81 |
+
|
| 82 |
+
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 83 |
+
# print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 84 |
+
|
| 85 |
+
# filtered_df = filter_queries(query, filtered_df)
|
| 86 |
+
# print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
| 87 |
+
|
| 88 |
+
# print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 89 |
+
# print("Filtered dataframe head:")
|
| 90 |
+
# print(filtered_df.head())
|
| 91 |
+
|
| 92 |
+
# df = select_columns(filtered_df, columns)
|
| 93 |
+
# print(f"Final df shape: {df.shape}")
|
| 94 |
+
# print("Final dataframe head:")
|
| 95 |
+
# print(df.head())
|
| 96 |
+
# return df
|
| 97 |
+
|
| 98 |
def update_table(
|
| 99 |
hidden_df: pd.DataFrame,
|
| 100 |
columns: list,
|
|
|
|
| 125 |
print(f"Final df shape: {df.shape}")
|
| 126 |
print("Final dataframe head:")
|
| 127 |
print(df.head())
|
| 128 |
+
column_dtypes = {col: TYPES[COLS.index(col)] if col in COLS else "str" for col in df.columns}
|
| 129 |
+
|
| 130 |
+
return gr.Dataframe.update(
|
| 131 |
+
value=df.to_dict(orient="records"),
|
| 132 |
+
headers=list(df.columns),
|
| 133 |
+
datatype=column_dtypes
|
| 134 |
+
)
|
| 135 |
|
| 136 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 137 |
query = request.query_params.get("query") or ""
|
|
|
|
| 309 |
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 310 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
| 311 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
| 312 |
+
column_dtypes = {col: TYPES[COLS.index(col)] if col in COLS else "str" for col in leaderboard_df_filtered.columns}
|
| 313 |
+
|
| 314 |
# leaderboard_table = gr.components.Dataframe(
|
| 315 |
# value=leaderboard_df_filtered,
|
| 316 |
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
|
|
|
| 320 |
# visible=True,
|
| 321 |
# )
|
| 322 |
leaderboard_table = gr.components.Dataframe(
|
| 323 |
+
value=leaderboard_df_filtered.to_dict(orient="records"),
|
| 324 |
headers=list(leaderboard_df_filtered.columns),
|
| 325 |
+
datatype=column_dtypes,
|
| 326 |
elem_id="leaderboard-table",
|
| 327 |
interactive=False,
|
| 328 |
visible=True,
|