Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
File size: 3,667 Bytes
df66f6e 2a5f9fb df66f6e 309aa01 09cabca a49f289 2a5f9fb 309aa01 2a5f9fb b5474e9 2a5f9fb 309aa01 2a5f9fb 3bdbd04 2a5f9fb 976f398 309aa01 2a5f9fb 09cabca 027390b 309aa01 2a5f9fb 309aa01 2a5f9fb a49f289 2a5f9fb 309aa01 2a5f9fb a49f289 309aa01 2a5f9fb a49f289 3bdbd04 309aa01 a49f289 2a5f9fb 309aa01 2a5f9fb 309aa01 2a5f9fb 309aa01 2a5f9fb 309aa01 2a5f9fb 309aa01 2a5f9fb 309aa01 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import json
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.display.utils import EvalQueuedModel, LLMJpEvalVersion, VllmVersion
from src.envs import API, EVAL_REQUESTS_PATH, HF_TOKEN, QUEUE_REPO
from src.submission.check_validity import already_submitted_models, check_model_card, is_model_on_hub
REQUESTED_MODELS: set[EvalQueuedModel] = set()
LLM_JP_EVAL_VERSION = LLMJpEvalVersion.current.value.name
VLLM_VERSION = VllmVersion.current.value.name
def add_new_eval(
model_id: str,
revision: str,
precision: str,
model_type: str,
add_special_tokens: str,
):
global REQUESTED_MODELS
if not REQUESTED_MODELS:
REQUESTED_MODELS = already_submitted_models(EVAL_REQUESTS_PATH)
revision = revision or "main"
model_data = EvalQueuedModel(
model=model_id,
revision=revision,
precision=precision,
add_special_tokens=add_special_tokens,
llm_jp_eval_version=LLM_JP_EVAL_VERSION,
vllm_version=VLLM_VERSION,
)
if model_data in REQUESTED_MODELS:
return styled_warning("This model has already been submitted with the same configuration.")
if "/" in model_id:
user_or_org, model_name = model_id.split("/")
else:
user_or_org, model_name = "", model_id
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Is the model on the hub?
model_on_hub, error, _ = is_model_on_hub(
model_name=model_id, revision=revision, token=HF_TOKEN, test_tokenizer=True
)
if not model_on_hub:
return styled_error(f'Model "{model_id}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model_id, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
# Were the model card and license filled?
try:
_ = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model_id)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model_type": model_type,
"model": model_id,
"precision": precision,
"revision": revision,
"add_special_tokens": add_special_tokens,
"llm_jp_eval_version": LLM_JP_EVAL_VERSION,
"vllm_version": VLLM_VERSION,
"status": "PENDING",
"submitted_time": current_time,
}
print("Creating eval file")
OUT_DIR = EVAL_REQUESTS_PATH / user_or_org
OUT_DIR.mkdir(parents=True, exist_ok=True)
out_file_name = f"{model_name}_eval_request_False_{precision}_{add_special_tokens}_{VLLM_VERSION}.json"
out_path = OUT_DIR / out_file_name
with out_path.open("w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.relative_to(EVAL_REQUESTS_PATH).as_posix(),
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_id} to eval queue",
)
REQUESTED_MODELS.add(model_data)
# Remove the local file
out_path.unlink()
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|