File size: 10,797 Bytes
efeee6d
314f91a
95f85ed
efeee6d
 
 
 
 
 
314f91a
b899767
 
efeee6d
087bfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5844b1
 
 
087bfcc
 
 
 
3dbe4cb
087bfcc
 
1ffc326
 
b899767
 
efeee6d
 
 
8bd7a58
58733e4
efeee6d
8c49cb6
d2e0fdf
8bd7a58
 
a2c8f31
067f637
d2e0fdf
067f637
8bd7a58
0227006
 
efeee6d
0227006
d313dbd
067f637
 
 
0cc7ac6
067f637
0cc7ac6
067f637
0cc7ac6
067f637
 
 
 
0cc7ac6
067f637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d313dbd
 
9833cdb
d16cee2
d313dbd
 
8c49cb6
d313dbd
 
 
 
 
 
 
 
 
8c49cb6
b323764
d313dbd
 
 
 
 
 
 
 
b323764
d313dbd
 
 
 
8c49cb6
 
d16cee2
58733e4
2a73469
 
217b585
9833cdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from dataclasses import dataclass
from enum import Enum

@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str


# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
    AVG = Task("scores", "AVG", "AVG")
    CG = Task("scores", "CG", "CG")
    EL = Task("scores", "EL", "EL")
    FA = Task("scores", "FA", "FA")
    HE = Task("scores", "HE", "HE")
    MC = Task("scores", "MC", "MC")
    MR = Task("scores", "MR", "MR")
    MT = Task("scores", "MT", "MT")
    NLI = Task("scores", "NLI", "NLI")
    QA = Task("scores", "QA", "QA")
    RC = Task("scores", "RC", "RC")
    SUM = Task("scores", "SUM", "SUM")
    alt_e_to_j_bert_score_ja_f1 = Task("scores", "alt-e-to-j_bert_score_ja_f1", "ALT E to J BERT Score")
    alt_e_to_j_bleu_ja = Task("scores", "alt-e-to-j_bleu_ja", "ALT E to J BLEU")
    alt_e_to_j_comet_wmt22 = Task("scores", "alt-e-to-j_comet_wmt22", "ALT E to J COMET WMT22")
    alt_j_to_e_bert_score_en_f1 = Task("scores", "alt-j-to-e_bert_score_en_f1", "ALT J to E BERT Score")
    alt_j_to_e_bleu_en = Task("scores", "alt-j-to-e_bleu_en", "ALT J to E BLEU")
    alt_j_to_e_comet_wmt22 = Task("scores", "alt-j-to-e_comet_wmt22", "ALT J to E COMET WMT22")
    chabsa_set_f1 = Task("scores", "chabsa_set_f1", "ChABSA")
    commonsensemoralja_exact_match = Task("scores", "commonsensemoralja_exact_match", "CommonSenseMoralJA")
    jamp_exact_match = Task("scores", "jamp_exact_match", "JAMP")
    janli_exact_match = Task("scores", "janli_exact_match", "JANLI")
    jcommonsenseqa_exact_match = Task("scores", "jcommonsenseqa_exact_match", "JCommonSenseQA")
    jemhopqa_char_f1 = Task("scores", "jemhopqa_char_f1", "JEMHopQA")
    jmmlu_exact_match = Task("scores", "jmmlu_exact_match", "JMMLU")
    jnli_exact_match = Task("scores", "jnli_exact_match", "JNLI")
    jsem_exact_match = Task("scores", "jsem_exact_match", "JSEM")
    jsick_exact_match = Task("scores", "jsick_exact_match", "JSICK")
    jsquad_char_f1 = Task("scores", "jsquad_char_f1", "JSquad")
    jsts_pearson = Task("scores", "jsts_pearson", "JSTS")
    jsts_spearman = Task("scores", "jsts_spearman", "JSTS")
    kuci_exact_match = Task("scores", "kuci_exact_match", "KUCI")
    mawps_exact_match = Task("scores", "mawps_exact_match", "MAWPS")
    mmlu_en_exact_match = Task("scores", "mmlu_en_exact_match", "MMLU")
    niilc_char_f1 = Task("scores", "niilc_char_f1", "NIILC")
    wiki_coreference_set_f1 = Task("scores", "wiki_coreference_set_f1", "Wiki Coreference")
    wiki_dependency_set_f1 = Task("scores", "wiki_dependency_set_f1", "Wiki Dependency")
    wiki_ner_set_f1 = Task("scores", "wiki_ner_set_f1", "Wiki NER")
    wiki_pas_set_f1 = Task("scores", "wiki_pas_set_f1", "Wiki PAS")
    wiki_reading_char_f1 = Task("scores", "wiki_reading_char_f1", "Wiki Reading")
    wikicorpus_e_to_j_bert_score_ja_f1 = Task("scores", "wikicorpus-e-to-j_bert_score_ja_f1", "WikiCorpus E to J BERT Score")
    wikicorpus_e_to_j_bleu_ja = Task("scores", "wikicorpus-e-to-j_bleu_ja", "WikiCorpus E to J BLEU")
    wikicorpus_e_to_j_comet_wmt22 = Task("scores", "wikicorpus-e-to-j_comet_wmt22", "WikiCorpus E to J COMET WMT22")
    wikicorpus_j_to_e_bert_score_en_f1 = Task("scores", "wikicorpus-j-to-e_bert_score_en_f1", "WikiCorpus J to E BERT Score")
    wikicorpus_j_to_e_bleu_en = Task("scores", "wikicorpus-j-to-e_bleu_en", "WikiCorpus J to E BLEU")
    wikicorpus_j_to_e_comet_wmt22 = Task("scores", "wikicorpus-j-to-e_comet_wmt22", "WikiCorpus J to E COMET WMT22")
    xlsum_ja_bert_score_ja_f1 = Task("scores", "xlsum_ja_bert_score_ja_f1", "XL-Sum JA BERT Score")
    xlsum_ja_bleu_ja = Task("scores", "xlsum_ja_bleu_ja", "XL-Sum JA BLEU")
    xlsum_ja_rouge1 = Task("scores", "xlsum_ja_rouge1", "XL-Sum ROUGE1")
    xlsum_ja_rouge2 = Task("scores", "xlsum_ja_rouge2", "XL-Sum ROUGE2")
    # xlsum_ja_rouge2_scaling = Task("scores", "xlsum_ja_rouge2_scaling", "XL-Sum JA ROUGE2 Scaling")
    xlsum_ja_rougeLsum = Task("scores", "xlsum_ja_rougeLsum", "XL-Sum ROUGE-Lsum")


NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------



# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">Open Japanese LLM Leaderboard by LLM-Jp</h1>"""

# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
🇯🇵 The Open Japanese LLM Leaderboard 🌸 by [LLM-Jp](https://llm-jp.nii.ac.jp/en/) evaluates the performance of Japanese Large Language Models (LLMs).

This leaderboard was built by [LLM-Jp](https://llm-jp.nii.ac.jp/en/), a cross-organizational project for the research and development of Japanese large language models (LLMs). Organized by the National Institute of Informatics, LLM-jp aims to develop open-source and strong Japanese LLMs, and as of this writing, more than 1,500 participants from academia and industry are working together for this purpose.

When you submit a model on the "Submit here!" page, it is automatically evaluated on a set of benchmarks.This Open Japanese LLM Leaderboard assesses language understanding, of Japanese LLMs with more than 52 benchmarks from classical to modern NLP tasks such as Natural language inference, Question Answering, Machine Translation, Code Generation, Mathematical reasoning, Summarization, etc.

For more information about benchmarks, and datasets, please consult the "About" page. For more details, please refer to the website of [LLM-Jp](https://llm-jp.nii.ac.jp/en/)

"""

# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
## How it works
📈 We evaluate Japanese Large Language Models on 52 key benchmarks leveraging our evaluation tool [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval), a unified framework to evaluate Japanese LLMs on various evaluation tasks.

Benchmarks:
**NLI (Natural Language Inference)**

- `Jamp`  JAMP, a Japanese NLI benchmark focused on temporal inference [Source](https://github.com/tomo-ut/temporalNLI_dataset) | License CC BY-SA 4.0

### JaNLI

Source:https://github.com/verypluming/JaNLI
License:CC BY-SA 4.0

#### JNLI

Source:https://github.com/yahoojapan/JGLUE
License:CC BY-SA 4.0

###JSeM

Source:https://github.com/DaisukeBekki/JSeM
License:BSD 3-Clause

###JSICK

Source:https://github.com/verypluming/JSICK
License:CC BY-SA 4.0

QA (Question Answering)

###JEMHopQA

Source:https://github.com/aiishii/JEMHopQA
License:CC BY-SA 4.0

###NIILC

Source:https://github.com/mynlp/niilc-qa
License:CC BY-SA 4.0

###JAQKET (AIO)

Source:https://www.nlp.ecei.tohoku.ac.jp/projects/jaqket/
License:CC BY-SA 4.0(Other licenses are required for corporate usage)

RC (Reading Comprehension)

###JSQuAD

Source:https://github.com/yahoojapan/JGLUE
License:CC BY-SA 4.0

MC (Multiple Choice question answering)

###JCommonsenseMorality

Source:https://github.com/Language-Media-Lab/commonsense-moral-ja
License:MIT License

###JCommonsenseQA

Source:https://github.com/yahoojapan/JGLUE
License:CC BY-SA 4.0

###Kyoto University Commonsense Inference dataset (KUCI)

Source:https://github.com/ku-nlp/KUCI
License:CC BY-SA 4.0

EL (Entity Linking)

###chABSA

Source:https://github.com/chakki-works/chABSA-dataset
License:CC BY 4.0

FA (Fundamental Analysis)

###Wikipedia Annotated Corpus

Source:https://github.com/ku-nlp/WikipediaAnnotatedCorpus
License:CC BY-SA 4.0
List of tasks:

Reading Prediction
Named-entity recognition (NER)
Dependency Parsing
Predicate-argument structure analysis (PAS)
Coreference Resolution

MR (Mathematical Reasoning)

###MAWPS

Source:https://github.com/nlp-waseda/chain-of-thought-ja-dataset
License:Apache-2.0

###MGSM

Source:https://huggingface.co/datasets/juletxara/mgsm
License:MIT License

MT (Machine Translation)

###Asian Language Treebank (ALT) - Parallel Corpus

Source: https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/index.html
License:CC BY 4.0

###WikiCorpus (Japanese-English Bilingual Corpus of Wikipedia's articles about the city of Kyoto)

Source: https://alaginrc.nict.go.jp/WikiCorpus/
License:CC BY-SA 3.0 deed

STS (Semantic Textual Similarity)

This task is supported by llm-jp-eval, but it is not included in the evaluation score average.

###JSTS

Source:https://github.com/yahoojapan/JGLUE
License:CC BY-SA 4.0

HE (Human Examination)

###MMLU

Source:https://github.com/hendrycks/test
License:MIT License

###JMMLU

Source:https://github.com/nlp-waseda/JMMLU
License:CC BY-SA 4.0(3 tasks under the CC BY-NC-ND 4.0 license)

CG (Code Generation)

###MBPP

Source:https://huggingface.co/datasets/llm-jp/mbpp-ja
License:CC-BY-4.0

SUM (Summarization)

###XL-Sum

Source:https://github.com/csebuetnlp/xl-sum
License:CC BY-NC-SA 4.0(Due to the non-commercial license, this dataset will not be used, unless you specifically agree to the license and terms of use)


## Reproducibility
To reproduce our results, here is the commands you can run:

"""

EVALUATION_QUEUE_TEXT = """
## Some good practices before submitting a model

### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.

Note: make sure your model is public!
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!

### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!

### 3) Make sure your model has an open license!
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗

### 4) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card

## In case of model failure
If your model is displayed in the `FAILED` category, its execution stopped.
Make sure you have followed the above steps first.
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
"""