File size: 7,810 Bytes
f2a6ef6
 
ca1e7f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a6ef6
 
 
ca1e7f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a6ef6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import statsmodels.api as sm

# Set the layout to wide
st.set_page_config(layout="wide")


def prep_rankings_table(df, y_column):
    # Create a copy of the dataframe.
    df_copy = df.copy()

    # Select the columns we care about, sort by the y column, and reset the index.
    df_copy = (
        df_copy[
            [
                "model_name",
                y_column,
                "num_words_mean",
            ]
        ]
        .sort_values(y_column, ascending=False)
        .reset_index()
    )

    # Create a rank column.
    df_copy["rank"] = df_copy.index + 1

    # Round the y column.
    df_copy[y_column] = df_copy[y_column].round(2)

    # Fix the order.
    df_copy = df_copy[["rank", "model_name", y_column, "num_words_mean"]]
    return df_copy


def app():
    st.title("AlpacaEval Visualizations")

    st.markdown("## Win rate vs. overall mean length")

    # Load the data
    df = pd.read_json("data/model_win_rates.json")

    # Add a model name column for hover labels
    df["model_name"] = df.index.astype(str)

    # Define the preset groups
    presets = {
        "gpt": df[df["model_name"].str.contains("openai|gpt", case=False)][
            "model_name"
        ].tolist(),
        "claude": df[df["model_name"].str.contains("claude", case=False)][
            "model_name"
        ].tolist(),
        "moa": df[df["model_name"].str.contains("moa", case=False)][
            "model_name"
        ].tolist(),
        "llama": df[df["model_name"].str.contains("llama", case=False)][
            "model_name"
        ].tolist(),
        "custom": [],
    }

    # Add radio button for preset groups
    preset_selection = st.radio(
        "Select a preset group of models or choose 'custom' to select manually",
        options=["custom", "gpt", "claude", "moa", "llama"],
    )

    # Add multiselect for custom model selection
    if preset_selection == "custom":
        selected_models = st.multiselect(
            "Select models to highlight", options=df["model_name"].unique()
        )
    else:
        selected_models = presets[preset_selection]

    def create_scatter_plot(df, y_column, selected_models, title):
        fig = go.Figure()

        # Add scatter plots for num_words_mean and num_tokens_mean
        fig.add_trace(
            go.Scatter(
                x=df["num_words_mean"],
                y=df[y_column],
                mode="markers",
                name="words",
                text=df["model_name"],
                marker=dict(size=5, color="skyblue"),
                showlegend=True,
                visible="legendonly",  # Make 'words' trace initially visible only in legend
            )
        )
        fig.add_trace(
            go.Scatter(
                x=df["num_tokens_mean"],
                y=df[y_column],
                mode="markers",
                name="tokens",
                text=df["model_name"],
                marker=dict(size=5, color="orange"),
                showlegend=True,
            )
        )

        # Highlight selected models
        if selected_models:
            selected_data = df[df["model_name"].isin(selected_models)]
            fig.add_trace(
                go.Scatter(
                    x=selected_data["num_words_mean"],
                    y=selected_data[y_column],
                    mode="markers",
                    name="selected words",
                    text=selected_data["model_name"],
                    marker=dict(size=10, color="blue"),
                    showlegend=True,
                    visible="legendonly",  # Make 'selected words' trace initially visible only in legend
                )
            )
            fig.add_trace(
                go.Scatter(
                    x=selected_data["num_tokens_mean"],
                    y=selected_data[y_column],
                    mode="markers",
                    name="selected tokens",
                    text=selected_data["model_name"],
                    marker=dict(size=10, color="orangered"),
                    showlegend=True,
                )
            )

        # Add trendlines
        def add_trendline(fig, x, y, name, color, visibility="legendonly"):
            X = sm.add_constant(df[x])
            model = sm.OLS(df[y], X).fit()
            trendline = model.predict(X)
            fig.add_trace(
                go.Scatter(
                    x=df[x],
                    y=trendline,
                    mode="lines",
                    name=f"{name} trendline",
                    line=dict(color=color, width=2),
                    visible=visibility,  # Control the initial visibility
                )
            )
            return model.rsquared

        r_squared_words = add_trendline(
            fig, "num_words_mean", y_column, "words", "blue"
        )
        r_squared_tokens = add_trendline(
            fig, "num_tokens_mean", y_column, "tokens", "orangered", visibility=True
        )

        # Update layout with titles and labels
        fig.update_layout(
            xaxis_title="Mean length",
            yaxis_title=(
                "Win rate"
                if y_column == "win_rate"
                else (
                    "LC Win Rate"
                    if y_column == "length_controlled_winrate"
                    else "Discrete Win Rate"
                )
            ),
            title=title,
            legend_title="Legend",
        )

        return fig, r_squared_words, r_squared_tokens

    y_column1 = "length_controlled_winrate"
    y_column2 = "win_rate"
    y_column3 = "discrete_win_rate"

    fig1, r_squared_words_1, r_squared_tokens_1 = create_scatter_plot(
        df, y_column1, selected_models, "Length-Controlled Win Rate"
    )
    fig2, r_squared_words_2, r_squared_tokens_2 = create_scatter_plot(
        df, y_column2, selected_models, "Win Rate"
    )
    fig3, r_squared_words_3, r_squared_tokens_3 = create_scatter_plot(
        df, y_column3, selected_models, "Discrete Win Rate"
    )

    # Create tabs for each chart
    tab1, tab2, tab3 = st.tabs(["LC Win Rate", "Win Rate", "Discrete Win Rate"])

    with tab1:
        col1, col2 = st.columns([3, 2])
        col1.plotly_chart(fig1)
        col2.markdown("#### Rankings")
        prepped_df = prep_rankings_table(df, "length_controlled_winrate")
        col2.dataframe(
            prepped_df,
            hide_index=True,
        )
        with st.expander("Trendline R²"):
            st.markdown(
                f"- R² (Words vs {y_column1}): {r_squared_words_1:.2f} \n- R² (Tokens vs {y_column1}): {r_squared_tokens_1:.2f}"
            )

    with tab2:
        col1, col2 = st.columns([3, 2])
        col1.plotly_chart(fig2)
        col2.markdown("#### Rankings")
        prepped_df = prep_rankings_table(df, "win_rate")
        col2.dataframe(
            prepped_df,
            hide_index=True,
        )
        with st.expander("Trendline R²"):
            st.markdown(
                f"- R² (Words vs {y_column2}): {r_squared_words_2:.2f} \n- R² (Tokens vs {y_column2}): {r_squared_tokens_2:.2f}"
            )

    with tab3:
        col1, col2 = st.columns([3, 2])
        col1.plotly_chart(fig3)
        col2.markdown("#### Rankings")
        prepped_df = prep_rankings_table(df, "discrete_win_rate")
        col2.dataframe(
            prepped_df,
            hide_index=True,
        )
        with st.expander("Trendline R²"):
            st.markdown(
                f"- R² (Words vs {y_column3}): {r_squared_words_3:.2f}\n- R² (Tokens vs {y_column3}): {r_squared_tokens_3:.2f}"
            )

    with st.expander("Raw data"):
        st.dataframe(df)


if __name__ == "__main__":
    app()