File size: 24,173 Bytes
f2a6ef6
 
ca1e7f4
 
 
707a231
ca1e7f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a6ef6
 
707a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a6ef6
707a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
 
707a231
ca1e7f4
 
707a231
 
 
 
ca1e7f4
 
707a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
 
707a231
 
ca1e7f4
707a231
 
 
ca1e7f4
 
 
 
 
707a231
 
ca1e7f4
707a231
 
 
ca1e7f4
707a231
ca1e7f4
 
 
707a231
 
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
707a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
 
707a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
707a231
 
ca1e7f4
707a231
 
 
 
 
 
ca1e7f4
707a231
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
707a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
 
 
707a231
 
 
 
 
 
 
 
ca1e7f4
707a231
ca1e7f4
707a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1e7f4
707a231
 
 
 
 
f2a6ef6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import statsmodels.api as sm
import random

# Set the layout to wide
st.set_page_config(layout="wide")


def prep_rankings_table(df, y_column):
    # Create a copy of the dataframe.
    df_copy = df.copy()

    # Select the columns we care about, sort by the y column, and reset the index.
    df_copy = (
        df_copy[
            [
                "model_name",
                y_column,
                "num_words_mean",
            ]
        ]
        .sort_values(y_column, ascending=False)
        .reset_index()
    )

    # Create a rank column.
    df_copy["rank"] = df_copy.index + 1

    # Round the y column.
    df_copy[y_column] = df_copy[y_column].round(2)

    # Fix the order.
    df_copy = df_copy[["rank", "model_name", y_column, "num_words_mean"]]
    return df_copy


def get_preference(preference_score):
    rounded_preference_score = int(preference_score.round(0).iloc[0])
    return get_preference_from_rounded_score(rounded_preference_score)
    # if rounded_preference_score == 2:
    #     return "[2>1]"
    # elif rounded_preference_score == 1:
    #     return "[1>2]"


def get_preference_from_rounded_score(score):
    if score == 2:
        return "[2>1]"
    elif score == 1:
        return "[1>2]"
    return "[1=2]"
    # raise ValueError(f"Invalid score: {score}")


def app():
    fixed_model = "gpt4_1106_preview"

    # Ensure to initialize session state variables if they do not exist
    if "selected_instruction" not in st.session_state:
        st.session_state.selected_instruction = None

    if "selected_model" not in st.session_state:
        st.session_state.selected_model = "gpt4"

    if "selected_judge" not in st.session_state:
        st.session_state.selected_judge = None

    if "selected_dataset" not in st.session_state:
        st.session_state.selected_dataset = "NEW"

    if "instruction_options" not in st.session_state:
        st.session_state.instruction_options = []

    # Function to update the instruction options based on selected dataset
    def update_instruction_options():
        selected_dataset = st.session_state.dataset_selector
        if selected_dataset == "all" or selected_dataset == "NEW":
            instruction_options = df_response_judging["instruction"].unique().tolist()
        elif (
            selected_dataset == "None"
            or selected_dataset is None
            or str(selected_dataset) == ""
        ):
            instruction_options = (
                df_response_judging[pd.isna(df_response_judging["dataset"])][
                    "instruction"
                ]
                .unique()
                .tolist()
            )
        else:
            instruction_options = (
                df_response_judging[df_response_judging["dataset"] == selected_dataset][
                    "instruction"
                ]
                .unique()
                .tolist()
            )

        st.session_state.instruction_options = instruction_options

    def update_instruction():
        st.session_state.selected_instruction = st.session_state.instruction_selector

    def update_model():
        st.session_state.selected_model = st.session_state.model_selector

    def update_judge():
        st.session_state.selected_judge = st.session_state.judge_selector

    def randomize_selection():
        st.session_state.dataset_selector = random.choice(
            ["all"] + df_response_judging["dataset"].dropna().unique().tolist()
        )
        st.session_state.selected_model = random.choice(model_options)
        update_instruction_options()
        st.session_state.selected_instruction = random.choice(
            st.session_state.instruction_options
        )

    st.title("AlpacaEval Visualizations")

    outer_tabs = st.tabs(["Length bias in overall win rate", "Data explorer"])

    # Load the data
    df = pd.read_json("data/model_win_rates.jsonl", lines=True, orient="records")
    # df_responses = pd.read_json("data/df_responses.jsonl", lines=True, orient="records")
    df_response_judging = pd.read_json(
        "data/df_response_judging.jsonl", lines=True, orient="records"
    )

    # Prepare the model selector options
    model_options = df_response_judging["generator_2"].unique().tolist()

    with outer_tabs[0]:
        # Define the preset groups
        presets = {
            "gpt": df[df["model_name"].str.contains("openai|gpt", case=False)][
                "model_name"
            ].tolist(),
            "claude": df[df["model_name"].str.contains("claude", case=False)][
                "model_name"
            ].tolist(),
            "moa": df[df["model_name"].str.contains("moa", case=False)][
                "model_name"
            ].tolist(),
            "llama": df[df["model_name"].str.contains("llama", case=False)][
                "model_name"
            ].tolist(),
            "custom": [],
        }

        # Add radio button for preset groups
        preset_selection = st.radio(
            "Select a preset group of models or choose 'custom' to select manually.",
            options=["custom", "gpt", "claude", "moa", "llama"],
        )

        st.divider()

        # Add multiselect for custom model selection
        if preset_selection == "custom":
            selected_models = st.multiselect(
                "Select models to highlight", options=df["model_name"].unique()
            )
        else:
            selected_models = presets[preset_selection]

        def create_scatter_plot(df, y_column, selected_models, title):
            fig = go.Figure()

            # Add scatter plots for num_words_mean and num_tokens_mean
            fig.add_trace(
                go.Scatter(
                    x=df["num_words_mean"],
                    y=df[y_column],
                    mode="markers",
                    name="words",
                    text=df["model_name"],
                    marker=dict(size=5, color="skyblue"),
                    showlegend=True,
                )
            )
            fig.add_trace(
                go.Scatter(
                    x=df["num_tokens_mean"],
                    y=df[y_column],
                    mode="markers",
                    name="tokens",
                    text=df["model_name"],
                    marker=dict(size=5, color="orange"),
                    showlegend=True,
                    visible="legendonly",  # Make 'words' trace initially visible only in legend
                )
            )

            # Highlight selected models
            if selected_models:
                selected_data = df[df["model_name"].isin(selected_models)]
                fig.add_trace(
                    go.Scatter(
                        x=selected_data["num_words_mean"],
                        y=selected_data[y_column],
                        mode="markers",
                        name="selected words",
                        text=selected_data["model_name"],
                        marker=dict(size=10, color="blue"),
                        showlegend=True,
                    )
                )
                fig.add_trace(
                    go.Scatter(
                        x=selected_data["num_tokens_mean"],
                        y=selected_data[y_column],
                        mode="markers",
                        name="selected tokens",
                        text=selected_data["model_name"],
                        marker=dict(size=10, color="orangered"),
                        showlegend=True,
                        visible="legendonly",  # Make 'selected words' trace initially visible only in legend
                    )
                )

            # Add trendlines
            def add_trendline(fig, x, y, name, color, visibility="legendonly"):
                X = sm.add_constant(df[x])
                model = sm.OLS(df[y], X).fit()
                trendline = model.predict(X)
                fig.add_trace(
                    go.Scatter(
                        x=df[x],
                        y=trendline,
                        mode="lines",
                        name=f"{name} trendline",
                        line=dict(color=color, width=2),
                        visible=visibility,  # Control the initial visibility
                    )
                )
                return model.rsquared

            r_squared_words = add_trendline(
                fig, "num_words_mean", y_column, "words", "blue", visibility=True
            )
            r_squared_tokens = add_trendline(
                fig, "num_tokens_mean", y_column, "tokens", "orangered"
            )

            # Update layout with titles and labels
            fig.update_layout(
                xaxis_title="Mean length",
                yaxis_title=(
                    "Win rate"
                    if y_column == "win_rate"
                    else (
                        "LC Win Rate"
                        if y_column == "length_controlled_winrate"
                        else "Discrete Win Rate"
                    )
                ),
                title=title,
                legend_title="Legend",
            )

            return fig, r_squared_words, r_squared_tokens

        st.markdown("## Overall win rate")
        y_column1 = "length_controlled_winrate"
        y_column2 = "win_rate"
        y_column3 = "discrete_win_rate"

        fig1, r_squared_words_1, r_squared_tokens_1 = create_scatter_plot(
            df, y_column1, selected_models, "Length-Controlled Win Rate"
        )
        fig2, r_squared_words_2, r_squared_tokens_2 = create_scatter_plot(
            df, y_column2, selected_models, "Win Rate"
        )
        fig3, r_squared_words_3, r_squared_tokens_3 = create_scatter_plot(
            df, y_column3, selected_models, "Discrete Win Rate"
        )

        # Create tabs for each chart
        tab1, tab2, tab3 = st.tabs(["LC Win Rate", "Win Rate", "Discrete Win Rate"])

        with tab1:
            col1, col2 = st.columns([3, 2])
            col1.plotly_chart(fig1)
            col2.markdown("#### Rankings")
            prepped_df = prep_rankings_table(df, "length_controlled_winrate")
            col2.dataframe(
                prepped_df,
                hide_index=True,
            )
            with st.expander("Trendline R²"):
                st.markdown(
                    f"- R² (Words vs {y_column1}): {r_squared_words_1:.2f} \n- R² (Tokens vs {y_column1}): {r_squared_tokens_1:.2f}"
                )

        with tab2:
            col1, col2 = st.columns([3, 2])
            col1.plotly_chart(fig2)
            col2.markdown("#### Rankings")
            prepped_df = prep_rankings_table(df, "win_rate")
            col2.dataframe(
                prepped_df,
                hide_index=True,
            )
            with st.expander("Trendline R²"):
                st.markdown(
                    f"- R² (Words vs {y_column2}): {r_squared_words_2:.2f} \n- R² (Tokens vs {y_column2}): {r_squared_tokens_2:.2f}"
                )

        with tab3:
            col1, col2 = st.columns([3, 2])
            col1.plotly_chart(fig3)
            col2.markdown("#### Rankings")
            prepped_df = prep_rankings_table(df, "discrete_win_rate")
            col2.dataframe(
                prepped_df,
                hide_index=True,
            )
            with st.expander("Trendline R²"):
                st.markdown(
                    f"- R² (Words vs {y_column3}): {r_squared_words_3:.2f}\n- R² (Tokens vs {y_column3}): {r_squared_tokens_3:.2f}"
                )

        st.markdown("## Length bias in battles")

        df_response_judging_copy = df_response_judging.copy()
        if not selected_models:
            df_response_judging_copy["output_1_num_words"] = df_response_judging_copy[
                "output_1"
            ].apply(lambda x: len(x.split()))
            df_response_judging_copy["output_2_num_words"] = df_response_judging_copy[
                "output_2"
            ].apply(lambda x: len(x.split()))
            df_response_judging_copy["output_num_words_diff"] = (
                df_response_judging_copy["output_1_num_words"]
                - df_response_judging_copy["output_2_num_words"]
            )
            df_response_judging_copy["assigned_preference"] = (
                df_response_judging_copy["preference"]
                .round(0)
                .apply(get_preference_from_rounded_score)
            )
        else:
            df_response_judging_copy = df_response_judging_copy[
                df_response_judging_copy["generator_2"].isin(selected_models)
            ]
            df_response_judging_copy["output_1_num_words"] = df_response_judging_copy[
                "output_1"
            ].apply(lambda x: len(x.split()))
            df_response_judging_copy["output_2_num_words"] = df_response_judging_copy[
                "output_2"
            ].apply(lambda x: len(x.split()))
            df_response_judging_copy["output_num_words_diff"] = (
                df_response_judging_copy["output_1_num_words"]
                - df_response_judging_copy["output_2_num_words"]
            )
            df_response_judging_copy["assigned_preference"] = (
                df_response_judging_copy["preference"]
                .round(0)
                .apply(get_preference_from_rounded_score)
            )

        col1, col2 = st.columns(2)
        fig = px.scatter(
            df_response_judging_copy,
            x="output_1_num_words",
            y="output_2_num_words",
            color="assigned_preference",
            title=f"Pairwise preference based on response length",
            labels={
                "output_1_num_words": f"{fixed_model} (1) number of words",
                "output_2_num_words": "Target model (2) number of words",
            },
            color_discrete_map={
                "[1>2]": "blue",
                "[2>1]": "orangered",
                "[1=2]": "green",
            },
        )
        col1.plotly_chart(fig)

        # Plot of output_num_words_diff histogram, colored by assigned_preference.
        fig = px.histogram(
            df_response_judging_copy,
            x="output_num_words_diff",
            color="assigned_preference",
            title=f"Pairwise preference counts based on difference in response length",
            color_discrete_map={
                "[1>2]": "blue",
                "[2>1]": "orangered",
                "[1=2]": "green",
            },
            range_x=[-500, 500],
            labels={
                "output_num_words_diff": "Length difference in words between gpt4_1106_preview and target model"
            },
        )
        col2.plotly_chart(fig)

        with st.expander("Raw data"):
            st.dataframe(df)

    # Data explorer
    with outer_tabs[1]:
        # Add randomize button at the top of the app
        st.markdown("## Choose example")
        st.button(
            ":game_die: Randomize!",
            on_click=randomize_selection,
            type="primary",
        )

        left_col, right_col = st.columns([1, 3])

        st.session_state.selected_dataset = left_col.selectbox(
            "Select Dataset",
            ["all"] + df_response_judging["dataset"].dropna().unique().tolist(),
            key="dataset_selector",
            on_change=update_instruction_options,
        )
        update_instruction_options()
        st.session_state.selected_instruction = right_col.selectbox(
            f"Select Instruction ({len(st.session_state.instruction_options)} unique instructions)",
            st.session_state.instruction_options,
            key="instruction_selector",
            on_change=update_instruction,
            index=(
                st.session_state.instruction_options.index(
                    st.session_state.selected_instruction
                )
                if st.session_state.selected_instruction
                in st.session_state.instruction_options
                else 0
            ),
        )

        # All the models.
        all_models_judgings_details = df_response_judging[
            (df_response_judging["generator_1"] == fixed_model)
            & (
                df_response_judging["instruction"]
                == st.session_state.selected_instruction
            )
        ]

        st.divider()

        st.markdown(f"## Selected instruction")
        st.info(st.session_state.selected_instruction)

        st.divider()

        st.markdown(f"## Overall Battles")
        all_models_judgings_details["output_1_num_words"] = all_models_judgings_details[
            "output_1"
        ].apply(lambda x: len(x.split()))
        all_models_judgings_details["output_2_num_words"] = all_models_judgings_details[
            "output_2"
        ].apply(lambda x: len(x.split()))
        all_models_judgings_details["output_num_words_diff"] = (
            all_models_judgings_details["output_1_num_words"]
            - all_models_judgings_details["output_2_num_words"]
        )
        all_models_judgings_details["assigned_preference"] = (
            all_models_judgings_details["preference"]
            .round(0)
            .apply(get_preference_from_rounded_score)
        )

        # st.write(all_models_judgings_details)

        col1, col2, col3 = st.columns(3)

        fig = px.histogram(
            all_models_judgings_details,
            x="output_num_words_diff",
            color="assigned_preference",
            title=f"Pairwise preference counts based on difference in response length",
            color_discrete_map={
                "[1>2]": "blue",
                "[2>1]": "orangered",
                "[1=2]": "green",
            },
            range_x=[-500, 500],
            labels={
                "output_num_words_diff": "Difference in number of words between response 1 and 2.",
                "assigned_preference": "Assigned Preference",
            },
        )
        col1.plotly_chart(fig)

        # Plot of assigned preference counts.
        fig = px.histogram(
            all_models_judgings_details,
            x="assigned_preference",
            title=f"Assigned preferences for {fixed_model} vs. all models",
        )
        col2.plotly_chart(fig)

        # Models that are better than the fixed model.
        num_words_for_fixed_model = len(
            all_models_judgings_details.iloc[0]["output_1"].split()
        )
        better_models = all_models_judgings_details[
            all_models_judgings_details["assigned_preference"] == "[2>1]"
        ]

        shorter_models = better_models[
            better_models["output_2_num_words"] <= num_words_for_fixed_model
        ]
        longer_models = better_models[
            better_models["output_2_num_words"] > num_words_for_fixed_model
        ]
        col3.markdown(
            f"### Models that are better than {fixed_model} ({num_words_for_fixed_model})"
        )
        if shorter_models.size != 0:
            shorter_models_string = ""
            for _, shorter_model in shorter_models.iterrows():
                if shorter_model["generator_2"] != fixed_model:
                    shorter_models_string += f"- {shorter_model['generator_2']} ({shorter_model['output_2_num_words']})\n"
            col3.markdown("**With shorter or equal length responses:**")
            col3.markdown(shorter_models_string)
        else:
            col3.write("None")
        if longer_models.size != 0:
            longer_models_string = ""
            for _, longer_model in longer_models.iterrows():
                if longer_model["generator_2"] != fixed_model:
                    longer_models_string += f"- {longer_model['generator_2']} ({longer_model['output_2_num_words']})\n"
            col3.markdown("**With longer responses:**")
            col3.markdown(longer_models_string)
        else:
            col3.write("None")

        # Judging details.
        st.markdown(f"## Individual Battle Details")
        judging_details = df_response_judging[
            (df_response_judging["generator_1"] == fixed_model)
            & (df_response_judging["generator_2"] == st.session_state.selected_model)
            & (
                df_response_judging["instruction"]
                == st.session_state.selected_instruction
            )
        ]

        # if not judging_details.empty:
        if not judging_details["preference"].empty:
            preference = get_preference(judging_details["preference"])
            if preference == "[1>2]":
                st.write(
                    f"**{fixed_model}** is better than **{st.session_state.selected_model}**"
                )
            else:
                st.write(
                    f"**{st.session_state.selected_model}** is better than **{fixed_model}**"
                )
            st.write(
                f"- **Score:** {judging_details['preference'].round(2).item()}\n- **Assigned preference:** {preference}"
            )

            with st.expander("Additional information"):
                st.write(
                    judging_details[
                        [
                            "instruction",
                            "time_per_example",
                            "price_per_example",
                            "raw_completion",
                        ]
                    ]
                )

        # Create two columns for model selectors
        st.markdown("## Responses")
        col1, col2 = st.columns(2)

        with col1:
            st.selectbox(
                "Reference model",
                [fixed_model],
                key="fixed_model",
            )

            # Get the response string for the fixed model
            if st.session_state.selected_instruction:
                preference = get_preference(judging_details["preference"])
                response_details_fixed = df_response_judging[
                    (
                        df_response_judging["instruction"]
                        == st.session_state.selected_instruction
                    )
                    & (df_response_judging["generator_1"] == fixed_model)
                ].iloc[0]

                st.write(
                    f'Number of words: {len(response_details_fixed["output_1"].split())}'
                )

                # Display the response string
                if preference == "[1>2]":
                    st.success(response_details_fixed["output_1"])
                else:
                    st.error(response_details_fixed["output_1"])

        with col2:
            st.session_state.selected_model = st.selectbox(
                "Select Model",
                model_options,
                key="model_selector",
                on_change=update_model,
                index=(
                    model_options.index(st.session_state.selected_model)
                    if st.session_state.selected_model
                    else 0
                ),
            )

            # Get the response string for the selected model
            if (
                st.session_state.selected_model
                and st.session_state.selected_instruction
            ):
                response_details_dynamic = df_response_judging[
                    (
                        df_response_judging["instruction"]
                        == st.session_state.selected_instruction
                    )
                    & (
                        df_response_judging["generator_2"]
                        == st.session_state.selected_model
                    )
                ].iloc[0]

                st.write(
                    f'Number of words: {len(response_details_dynamic["output_2"].split())}'
                )

                # Display the response string
                if preference == "[2>1]":
                    st.success(response_details_dynamic["output_2"])
                else:
                    st.error(response_details_dynamic["output_2"])


if __name__ == "__main__":
    app()