Spaces:
Runtime error
Runtime error
Commit
·
9624517
1
Parent(s):
7ff5563
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,154 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
from flask import Flask
|
3 |
+
import gc
|
4 |
+
import math
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from encoded_video import EncodedVideo, write_video
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision.transforms.functional import center_crop, to_tensor
|
11 |
|
12 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
13 |
|
14 |
+
print("🧠 Loading Model...")
|
15 |
+
model = torch.hub.load(
|
16 |
+
"AK391/animegan2-pytorch:main",
|
17 |
+
"generator",
|
18 |
+
pretrained=True,
|
19 |
+
device=device,
|
20 |
+
progress=True,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def face2paint(model: torch.nn.Module, img: Image.Image, size: int = 512, device: str = device):
|
25 |
+
w, h = img.size
|
26 |
+
s = min(w, h)
|
27 |
+
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
|
28 |
+
img = img.resize((size, size), Image.LANCZOS)
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
input = to_tensor(img).unsqueeze(0) * 2 - 1
|
32 |
+
output = model(input.to(device)).cpu()[0]
|
33 |
+
|
34 |
+
output = (output * 0.5 + 0.5).clip(0, 1) * 255.0
|
35 |
+
|
36 |
+
return output
|
37 |
+
|
38 |
+
|
39 |
+
# This function is taken from pytorchvideo!
|
40 |
+
def uniform_temporal_subsample(x: torch.Tensor, num_samples: int, temporal_dim: int = -3) -> torch.Tensor:
|
41 |
+
"""
|
42 |
+
Uniformly subsamples num_samples indices from the temporal dimension of the video.
|
43 |
+
When num_samples is larger than the size of temporal dimension of the video, it
|
44 |
+
will sample frames based on nearest neighbor interpolation.
|
45 |
+
Args:
|
46 |
+
x (torch.Tensor): A video tensor with dimension larger than one with torch
|
47 |
+
tensor type includes int, long, float, complex, etc.
|
48 |
+
num_samples (int): The number of equispaced samples to be selected
|
49 |
+
temporal_dim (int): dimension of temporal to perform temporal subsample.
|
50 |
+
Returns:
|
51 |
+
An x-like Tensor with subsampled temporal dimension.
|
52 |
+
"""
|
53 |
+
t = x.shape[temporal_dim]
|
54 |
+
assert num_samples > 0 and t > 0
|
55 |
+
# Sample by nearest neighbor interpolation if num_samples > t.
|
56 |
+
indices = torch.linspace(0, t - 1, num_samples)
|
57 |
+
indices = torch.clamp(indices, 0, t - 1).long()
|
58 |
+
return torch.index_select(x, temporal_dim, indices)
|
59 |
+
|
60 |
+
|
61 |
+
# This function is taken from pytorchvideo!
|
62 |
+
def short_side_scale(
|
63 |
+
x: torch.Tensor,
|
64 |
+
size: int,
|
65 |
+
interpolation: str = "bilinear",
|
66 |
+
) -> torch.Tensor:
|
67 |
+
"""
|
68 |
+
Determines the shorter spatial dim of the video (i.e. width or height) and scales
|
69 |
+
it to the given size. To maintain aspect ratio, the longer side is then scaled
|
70 |
+
accordingly.
|
71 |
+
Args:
|
72 |
+
x (torch.Tensor): A video tensor of shape (C, T, H, W) and type torch.float32.
|
73 |
+
size (int): The size the shorter side is scaled to.
|
74 |
+
interpolation (str): Algorithm used for upsampling,
|
75 |
+
options: nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area'
|
76 |
+
Returns:
|
77 |
+
An x-like Tensor with scaled spatial dims.
|
78 |
+
"""
|
79 |
+
assert len(x.shape) == 4
|
80 |
+
assert x.dtype == torch.float32
|
81 |
+
c, t, h, w = x.shape
|
82 |
+
if w < h:
|
83 |
+
new_h = int(math.floor((float(h) / w) * size))
|
84 |
+
new_w = size
|
85 |
+
else:
|
86 |
+
new_h = size
|
87 |
+
new_w = int(math.floor((float(w) / h) * size))
|
88 |
+
|
89 |
+
return torch.nn.functional.interpolate(x, size=(new_h, new_w), mode=interpolation, align_corners=False)
|
90 |
+
|
91 |
+
|
92 |
+
def inference_step(vid, start_sec, duration, out_fps):
|
93 |
+
|
94 |
+
clip = vid.get_clip(start_sec, start_sec + duration)
|
95 |
+
video_arr = torch.from_numpy(clip['video']).permute(3, 0, 1, 2)
|
96 |
+
audio_arr = np.expand_dims(clip['audio'], 0)
|
97 |
+
audio_fps = None if not vid._has_audio else vid._container.streams.audio[0].sample_rate
|
98 |
+
|
99 |
+
x = uniform_temporal_subsample(video_arr, duration * out_fps)
|
100 |
+
x = center_crop(short_side_scale(x, 512), 512)
|
101 |
+
x /= 255.0
|
102 |
+
x = x.permute(1, 0, 2, 3)
|
103 |
+
with torch.no_grad():
|
104 |
+
output = model(x.to(device)).detach().cpu()
|
105 |
+
output = (output * 0.5 + 0.5).clip(0, 1) * 255.0
|
106 |
+
output_video = output.permute(0, 2, 3, 1).numpy()
|
107 |
+
|
108 |
+
return output_video, audio_arr, out_fps, audio_fps
|
109 |
+
|
110 |
+
|
111 |
+
def predict_fn(filepath, start_sec, duration):
|
112 |
+
out_fps = 18
|
113 |
+
vid = EncodedVideo.from_path(filepath)
|
114 |
+
for i in range(duration):
|
115 |
+
print(f"🖼️ Processing step {i + 1}/{duration}...")
|
116 |
+
video, audio, fps, audio_fps = inference_step(vid=vid, start_sec=i + start_sec, duration=1, out_fps=out_fps)
|
117 |
+
gc.collect()
|
118 |
+
if i == 0:
|
119 |
+
video_all = video
|
120 |
+
audio_all = audio
|
121 |
+
else:
|
122 |
+
video_all = np.concatenate((video_all, video))
|
123 |
+
audio_all = np.hstack((audio_all, audio))
|
124 |
+
|
125 |
+
print(f"💾 Writing output video...")
|
126 |
+
|
127 |
+
try:
|
128 |
+
write_video('out.mp4', video_all, fps=fps, audio_array=audio_all, audio_fps=audio_fps, audio_codec='aac')
|
129 |
+
except:
|
130 |
+
print("❌ Error when writing with audio...trying without audio")
|
131 |
+
write_video('out.mp4', video_all, fps=fps)
|
132 |
+
|
133 |
+
print(f"✅ Done!")
|
134 |
+
del video_all
|
135 |
+
del audio_all
|
136 |
+
|
137 |
+
return 'out.mp4'
|
138 |
+
|
139 |
+
|
140 |
+
iface_file = gr.Interface(
|
141 |
+
predict_fn,
|
142 |
+
inputs=[
|
143 |
+
gr.inputs.Video(source="upload"),
|
144 |
+
gr.inputs.Slider(minimum=0, maximum=300, step=1, default=0),
|
145 |
+
gr.inputs.Slider(minimum=1, maximum=1000, step=1, default=2),
|
146 |
+
],
|
147 |
+
outputs=gr.outputs.Video(),
|
148 |
+
title='Animusica Studio',
|
149 |
+
description="",
|
150 |
+
article="",
|
151 |
+
css="footer {visibility: hidden}",
|
152 |
+
allow_flagging='never',
|
153 |
+
theme="default",
|
154 |
+
).launch(enable_queue=True, share=True)
|