query / UniprotKB_P_Sequence_RCSB_API_test.py
lkjjj26's picture
add UnitprotApi.py
f60f277
raw
history blame
7.63 kB
import requests
from typing import List, Dict, Optional
from dataclasses import dataclass
import re
from Bio import pairwise2
from Bio.Seq import Seq
import json
@dataclass
class ProteinQuery:
name: str
organism: Optional[str] = None
mutations: Optional[List[str]] = None
min_resolution: Optional[float] = None
max_resolution: Optional[float] = None
@dataclass
class ProteinStructure:
pdb_id: str
resolution: float
sequence: str
title: str
method: str
release_date: str
class ProteinSearchEngine:
def __init__(self, debug=False):
self.uniprot_api = "https://rest.uniprot.org/uniprotkb"
self.pdb_api = "https://data.rcsb.org/graphql"
def _get_uniprot_data(self, query: ProteinQuery) -> Dict:
"""UniProt API를 통해 기본 단백질 정보 검색"""
search_query = f'"{query.name}"'
if query.organism:
search_query += f' AND organism:"{query.organism}"'
params = {
"query": search_query,
"format": "json"
}
# self._debug_print(f"UniProt search query: {search_query}")
response = requests.get(f"{self.uniprot_api}/search", params=params)
data = response.json()
# self._debug_print(f"UniProt results count: {len(data.get('results', []))}")
return data
def _get_pdb_structures(self, uniprot_id: str, uniprot_sequence: str = None) -> List[ProteinStructure]:
"""REST API를 사용하여 PDB에서 구조 정보 검색"""
url = "https://search.rcsb.org/rcsbsearch/v2/query"
query = {
"query": {
"type": "group",
"logical_operator": "and",
"nodes": [
{
"type": "terminal",
"service": "text",
"parameters": {
"attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession",
"operator": "exact_match",
"value": uniprot_id
}
},
{
"type": "terminal",
"service": "text",
"parameters": {
"attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name",
"operator": "exact_match",
"value": "UniProt"
}
}
]
},
"return_type": "entry"
}
response = requests.post(url, json=query)
if response.status_code != 200:
# self._debug_print(f"Error querying PDB: {response.text}")
return []
data = response.json()
structures = []
for hit in data.get("result_set", []):
pdb_id = hit["identifier"]
# PDB API를 통해 구조 세부 정보 가져오기
structure_url = f"https://data.rcsb.org/rest/v1/core/entry/{pdb_id}"
structure_response = requests.get(structure_url)
if structure_response.status_code == 200:
structure_data = structure_response.json()
# 시퀀스 정보 가져오기
entity_url = f"https://data.rcsb.org/rest/v1/core/polymer_entity/{pdb_id}/1" # 첫 번째 엔티티 가져오기
entity_response = requests.get(entity_url)
sequence = ""
if entity_response.status_code == 200:
entity_data = entity_response.json()
sequence = entity_data.get("entity_poly", {}).get("pdbx_seq_one_letter_code", "")
structure = ProteinStructure(
pdb_id=pdb_id,
resolution=float(structure_data.get("rcsb_entry_info", {}).get("resolution_combined", [0.0])[0]),
sequence=sequence,
method=structure_data.get("exptl", [{}])[0].get("method", ""),
title=structure_data.get("struct", {}).get("title", ""),
release_date=structure_data.get("rcsb_accession_info", {}).get("initial_release_date", "")
)
structures.append(structure)
return structures
def search(self, query: ProteinQuery) -> List[ProteinStructure]:
"""주어진 쿼리로 단백질 구조 검색"""
# 1. UniProt에서 기본 정보 검색
uniprot_data = self._get_uniprot_data(query)
if not uniprot_data.get('results'):
# self._debug_print("No UniProt results found")
return []
all_structures = []
# 여러 UniProt 엔트리 검색
for entry in uniprot_data['results'][:5]: # 상위 5개만 검색
uniprot_id = entry['primaryAccession']
sequence = entry.get('sequence', {}).get('value', '')
# self._debug_print(f"Processing UniProt ID: {uniprot_id}")
# self._debug_print(f"UniProt Sequence ({len(sequence)} aa):\n{sequence}")
structures = self._get_pdb_structures(uniprot_id, sequence)
all_structures.extend(structures)
# self._debug_print(f"Total structures found: {len(all_structures)}")
# 3. Resolution 기준으로 필터링
filtered_structures = []
for structure in all_structures:
# Resolution 체크
if query.min_resolution and structure.resolution < query.min_resolution:
continue
if query.max_resolution and structure.resolution > query.max_resolution:
continue
filtered_structures.append(structure)
# self._debug_print(f"Structures after resolution filter: {len(filtered_structures)}")
# 4. Resolution 기준으로 정렬
filtered_structures.sort(key=lambda x: x.resolution)
return filtered_structures
def main():
# 검색 엔진 초기화
search_engine = ProteinSearchEngine(debug=True)
# 전체 검색 (resolution 5 이하)
query = ProteinQuery(
name="human hemoglobin A",
max_resolution=5.0 # resolution 제한 완화
)
# 검색 실행
results = search_engine.search(query)
# 결과를 파일로 출력
with open('protein_search_results.txt', 'w') as f:
f.write(f"Search Query: {query.name}\n")
if query.organism:
f.write(f"Organism: {query.organism}\n")
f.write(f"Resolution Filter: <= {query.max_resolution} Å\n\n")
f.write(f"Found {len(results)} structures matching the criteria:\n")
for i, structure in enumerate(results, 1):
f.write(f"\n{i}. PDB ID: {structure.pdb_id}\n")
f.write(f" Resolution: {structure.resolution:.2f} Å\n")
f.write(f" Method: {structure.method}\n")
f.write(f" Title: {structure.title}\n")
f.write(f" Release Date: {structure.release_date}\n")
f.write(f" Sequence Length: {len(structure.sequence)} aa\n")
f.write(f" Sequence:\n{structure.sequence}\n")
f.write("-" * 80 + "\n")
print(f"Results have been saved to 'protein_search_results.txt'")
if __name__ == "__main__":
main()