query / app.py
lkjjj26's picture
add transformer path variable
1a3570b
raw
history blame
14.8 kB
from transformers import pipeline
from rcsbsearchapi import TextQuery, AttributeQuery, Query
from rcsbsearchapi.search import Sort, SequenceQuery
import os
from dotenv import load_dotenv
from shiny import App, render, ui, reactive
import pandas as pd
import warnings
import re
from UniprotKB_P_Sequence_RCSB_API_test import ProteinQuery, ProteinSearchEngine
import plotly.graph_objects as go
from shinywidgets import output_widget, render_widget
warnings.filterwarnings('ignore')
# Load environment variables from .env file
load_dotenv()
cache_dir = "./transformers_cache"
os.makedirs(cache_dir, exist_ok=True) # ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ
os.environ["TRANSFORMERS_CACHE"] = cache_dir # Hugging Face ์บ์‹œ ๊ฒฝ๋กœ ์„ค์ •
print("Hugging Face Cache Path:", os.getenv("TRANSFORMERS_CACHE"))
class PDBSearchAssistant:
def __init__(self, model_name="google/flan-t5-large"):
# Set up HuggingFace pipeline with better model
self.pipe = pipeline(
"text2text-generation",
model=model_name,
max_new_tokens=512,
temperature=0.3,
torch_dtype="auto",
device="cpu"
)
self.prompt_template = """
Extract specific search parameters from the query, if present:
1. Resolution cutoff (in ร…)
2. Sequence information
3. Specific PDB ID
4. Experimental method (X-RAY, EM, NMR)
Format:
Resolution: [maximum resolution in ร…, if mentioned]
Sequence: [any sequence mentioned]
PDB_ID: [specific PDB ID if mentioned]
Method: [experimental method if mentioned]
Examples:
Query: "Find X-ray structures better than 2.5ร… resolution"
Resolution: 2.5
Sequence: none
PDB_ID: none
Method: X-RAY
Query: "Show me NMR structures of kinases"
Resolution: none
Sequence: none
PDB_ID: none
Method: NMR
Now analyze:
Query: {query}
"""
def search_pdb(self, query):
try:
# Get search parameters from LLM
formatted_prompt = self.prompt_template.format(query=query)
response = self.pipe(formatted_prompt)[0]['generated_text']
print("Generated parameters:", response)
# Parse LLM response
resolution_limit = None
pdb_id = None
sequence = None
method = None
has_resolution_query = False
resolution_direction = "less"
# Check if query contains resolution-related terms
resolution_terms = {
'better': 'less',
'best': 'less',
'highest': 'less',
'good': 'less',
'fine': 'less',
'worse': 'greater',
'worst': 'greater',
'lowest': 'greater',
'poor': 'greater',
'resolution': None,
'รฅ': None,
'angstrom': None,
'than': None,
'under': 'less',
'below': 'less',
'above': 'greater',
'over': 'greater'
}
# Check if the original query mentions resolution
query_lower = query.lower()
# Determine resolution direction from query
for term, direction in resolution_terms.items():
if term in query_lower:
has_resolution_query = True
if direction: # if not None
resolution_direction = direction
# Also check for numerical values with ร…
if re.search(r'\d+\.?\d*\s*รฅ?', query_lower):
has_resolution_query = True
# Clean and parse LLM response
for line in response.split('\n'):
if 'Resolution:' in line:
value = line.split('Resolution:')[1].strip()
if value.lower() not in ['none', 'n/a'] and has_resolution_query:
try:
# Extract just the number
res_value = ''.join(c for c in value if c.isdigit() or c == '.')
resolution_limit = float(res_value)
except ValueError:
pass
elif 'Method:' in line:
value = line.split('Method:')[1].strip()
if value.lower() not in ['none', 'n/a']:
method = value.upper()
elif 'Sequence:' in line:
value = line.split('Sequence:')[1].strip()
if value.lower() not in ['none', 'n/a']:
sequence = value
elif 'PDB_ID:' in line:
value = line.split('PDB_ID:')[1].strip()
if value.lower() not in ['none', 'n/a']:
pdb_id = value
# Build search query
queries = []
# Check if the query contains a protein sequence pattern
# Check for amino acid sequence (minimum 25 residues)
query_words = query.split()
for word in query_words:
# Check if the word consists of valid amino acid letters
if (len(word) >= 25 and # minimum 25 residues requirement
all(c in 'ACDEFGHIKLMNPQRSTVWY' for c in word.upper()) and
sum(c.isupper() for c in word) / len(word) > 0.8):
sequence = word
break
# If sequence is found, use SequenceQuery
if sequence:
if len(sequence) < 25:
print("Warning: Sequence must be at least 25 residues long. Skipping sequence search.")
sequence = None
else:
print(f"Adding sequence search with identity 100% for sequence: {sequence}")
sequence_query = SequenceQuery(
sequence,
identity_cutoff=1.0, # 100% identity
evalue_cutoff=1,
sequence_type="protein"
)
queries.append(sequence_query)
# If no sequence, proceed with text search
else:
# Clean the original query and add text search
clean_query = query.lower()
# Remove resolution numbers and terms if they exist
if has_resolution_query:
clean_query = re.sub(r'\d+\.?\d*\s*รฅ?', '', clean_query)
for term in resolution_terms:
clean_query = clean_query.replace(term, '')
# Clean up extra spaces and trim
clean_query = ' '.join(clean_query.split())
print("Cleaned query:", clean_query)
# Add text search if query is not empty
if clean_query.strip():
text_query = AttributeQuery(
attribute="struct.title",
operator="contains_phrase",
value=clean_query
)
queries.append(text_query)
# Add resolution filter if specified
if resolution_limit and has_resolution_query:
operator = "less_or_equal" if resolution_direction == "less" else "greater_or_equal"
print(f"Adding resolution filter: {operator} {resolution_limit}ร…")
resolution_query = AttributeQuery(
attribute="rcsb_entry_info.resolution_combined",
operator=operator,
value=resolution_limit
)
queries.append(resolution_query)
# Add PDB ID search if specified
if pdb_id:
print(f"Searching for specific PDB ID: {pdb_id}")
id_query = AttributeQuery(
attribute="rcsb_id",
operator="exact_match",
value=pdb_id.upper()
)
queries = [id_query] # Override other queries for direct PDB ID search
# Add experimental method filter if specified
if method:
print(f"Adding experimental method filter: {method}")
method_query = AttributeQuery(
attribute="exptl.method",
operator="exact_match",
value=method
)
queries.append(method_query)
# Combine queries with AND operator
if queries:
final_query = queries[0]
for q in queries[1:]:
final_query = final_query & q
print("Final query:", final_query)
# Execute search
session = final_query.exec()
results = []
# Process results safely with additional information
try:
for entry in session:
# Handle both string and object types
if isinstance(entry, str):
result = {
'PDB ID': entry
}
else:
# Handle object type
result = {
'PDB ID': entry.identifier
}
results.append(result)
except Exception as e:
print(f"Error processing results: {str(e)}")
# If error occurs during processing, at least return PDB IDs
if isinstance(entry, str):
results.append({'PDB ID': entry})
print(f"Found {len(results)} structures")
return results
return []
except Exception as e:
print(f"Error during search: {str(e)}")
print(f"Error type: {type(e)}")
return []
def pdbsummary(name):
search_engine = ProteinSearchEngine()
query = ProteinQuery(
name,
max_resolution= 5.0
)
results = search_engine.search(query)
answer = ""
for i, structure in enumerate(results, 1):
answer += f"\n{i}. PDB ID : {structure.pdb_id}\n"
answer += f"\nResolution : {structure.resolution:.2f} A \n"
answer += f"Method : {structure.method}\n Title : {structure.title}\n"
answer += f"Release Date : {structure.release_date}\n Sequence length: {len(structure.sequence)} aa\n"
answer += f" Sequence:\n {structure.sequence}\n"
return answer
def create_interactive_table(df):
if df.empty:
return go.Figure()
# Create interactive table
table = go.Figure(data=[go.Table(
header=dict(
values=list(df.columns),
fill_color='paleturquoise',
align='left',
font=dict(size=14),
),
cells=dict(
values=[df[col] for col in df.columns],
align='left',
font=dict(size=13),
height=30
),
columnwidth=[len(str(max(df[col], key=len))) for col in df.columns]
)])
# Update table layout
table.update_layout(
margin=dict(l=0, r=0, t=0, b=0),
height=400,
autosize=True
)
return table
# Simplified Shiny app UI definition
app_ui = ui.page_fluid(
ui.tags.head(
ui.tags.style("""
.table a {
color: #0d6efd;
text-decoration: none;
}
.table a:hover {
color: #0a58ca;
text-decoration: underline;
}
""")
),
ui.h2("Advanced PDB Structure Search Tool"),
ui.row(
ui.column(12,
ui.input_text("query", "Search Query",
value="Human insulin"),
)
),
ui.row(
ui.column(12,
ui.p("Example queries:"),
ui.tags.ul(
ui.tags.li("Human hemoglobin C resolution better than 2.5ร…"),
ui.tags.li("Find structures containing sequence MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL"),
),
)
),
ui.row(
ui.column(12,
ui.input_action_button("search", "Search", class_="btn-primary"),
)
),
ui.row(
ui.column(12,
ui.h4("Search Parameters:"),
ui.output_text("search_conditions"),
)
),
ui.row(
ui.column(12,
ui.h4("Top 10 Results:"),
output_widget("results_table"),
ui.download_button("download", "Download Results")
)
)
)
def server(input, output, session):
assistant = PDBSearchAssistant()
results_store = reactive.Value([])
@reactive.Effect
@reactive.event(input.search)
def _():
results = assistant.search_pdb(query=input.query())
results_store.set(results)
# Convert results to DataFrame and add hyperlinks
df = pd.DataFrame(results)
if not df.empty:
df['PDB ID'] = df['PDB ID'].apply(
lambda x: f'<a href="https://www.rcsb.org/3d-view/{x}" target="_blank">{x}</a>'
)
@output
@render_widget
def results_table():
return create_interactive_table(df) # id ์ˆœ์œผ๋กœ ์ •๋ ฌ๋˜๋Š”๊ฑฐ์ธ๋“ฏ Top rank ์ˆœ์€ ์•„๋‹˜
@output
@render.text
def search_conditions():
results = results_store.get()
return f"""
Applied Search Conditions:
- Query: {input.query()}
- Total structures found: {len(results)}
"""
@output
@render.download(filename="pdb_search_results.csv")
def download():
df = pd.DataFrame(results_store.get())
return df.to_csv(index=False)
app = App(app_ui, server)
if __name__ == "__main__":
import nest_asyncio
nest_asyncio.apply()
app.run(host="0.0.0.0", port=7860)