File size: 7,556 Bytes
			
			| f60f277 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | import requests
from typing import List, Dict, Optional
from dataclasses import dataclass
@dataclass
class ProteinQuery:
    name: str
    organism: Optional[str] = None
    mutations: Optional[List[str]] = None
    min_resolution: Optional[float] = None
    max_resolution: Optional[float] = None
@dataclass
class ProteinStructure:
    pdb_id: str
    resolution: float
    sequence: str
    title: str
    method: str
    release_date: str
class ProteinSearchEngine:
    def __init__(self, debug=False):
        self.uniprot_api = "https://rest.uniprot.org/uniprotkb"
        self.pdb_api = "https://data.rcsb.org/graphql"
    
    def _get_uniprot_data(self, query: ProteinQuery) -> Dict:
        """UniProt API를 통해 기본 단백질 정보 검색"""
        
        search_query = f'"{query.name}"'
        if query.organism:
            search_query += f' AND organism:"{query.organism}"'
            
        params = {
            "query": search_query,
            "format": "json"
        }
        
        # self._debug_print(f"UniProt search query: {search_query}")
        response = requests.get(f"{self.uniprot_api}/search", params=params)
        data = response.json()
        # self._debug_print(f"UniProt results count: {len(data.get('results', []))}")
        return data
    
    def _get_pdb_structures(self, uniprot_id: str, uniprot_sequence: str = None) -> List[ProteinStructure]:
        """REST API를 사용하여 PDB에서 구조 정보 검색"""
        url = "https://search.rcsb.org/rcsbsearch/v2/query"
        
        query = {
            "query": {
                "type": "group",
                "logical_operator": "and",
                "nodes": [
                    {
                        "type": "terminal",
                        "service": "text",
                        "parameters": {
                            "attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession",
                            "operator": "exact_match",
                            "value": uniprot_id
                        }
                    },
                    {
                        "type": "terminal",
                        "service": "text",
                        "parameters": {
                            "attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name",
                            "operator": "exact_match",
                            "value": "UniProt"
                        }
                    }
                ]
            },
            "return_type": "entry"
        }
        response = requests.post(url, json=query)
        
        if response.status_code != 200:
            # self._debug_print(f"Error querying PDB: {response.text}")
            return []
        
        data = response.json()
        structures = []
        
        for hit in data.get("result_set", []):
            pdb_id = hit["identifier"]
            # PDB API를 통해 구조 세부 정보 가져오기
            structure_url = f"https://data.rcsb.org/rest/v1/core/entry/{pdb_id}"
            structure_response = requests.get(structure_url)
            
            if structure_response.status_code == 200:
                structure_data = structure_response.json()
                
                # 시퀀스 정보 가져오기
                entity_url = f"https://data.rcsb.org/rest/v1/core/polymer_entity/{pdb_id}/1"  # 첫 번째 엔티티 가져오기
                entity_response = requests.get(entity_url)
                sequence = ""
                
                if entity_response.status_code == 200:
                    entity_data = entity_response.json()
                    sequence = entity_data.get("entity_poly", {}).get("pdbx_seq_one_letter_code", "")
                
                structure = ProteinStructure(
                    pdb_id=pdb_id,
                    resolution=float(structure_data.get("rcsb_entry_info", {}).get("resolution_combined", [0.0])[0]),
                    sequence=sequence,
                    method=structure_data.get("exptl", [{}])[0].get("method", ""),
                    title=structure_data.get("struct", {}).get("title", ""),
                    release_date=structure_data.get("rcsb_accession_info", {}).get("initial_release_date", "")
                )
                structures.append(structure)
                
        return structures
    
    def search(self, query: ProteinQuery) -> List[ProteinStructure]:
        """주어진 쿼리로 단백질 구조 검색"""
        # 1. UniProt에서 기본 정보 검색
        uniprot_data = self._get_uniprot_data(query)
        
        if not uniprot_data.get('results'):
            # self._debug_print("No UniProt results found")
            return []
        
        all_structures = []
        # 여러 UniProt 엔트리 검색
        for entry in uniprot_data['results'][:5]:  # 상위 5개만 검색
            uniprot_id = entry['primaryAccession']
            sequence = entry.get('sequence', {}).get('value', '')
            # self._debug_print(f"Processing UniProt ID: {uniprot_id}")
            # self._debug_print(f"UniProt Sequence ({len(sequence)} aa):\n{sequence}")
            
            structures = self._get_pdb_structures(uniprot_id, sequence)
            all_structures.extend(structures)
        
        # self._debug_print(f"Total structures found: {len(all_structures)}")
        
        # 3. Resolution 기준으로 필터링
        filtered_structures = []
        for structure in all_structures:
            # Resolution 체크
            if query.min_resolution and structure.resolution < query.min_resolution:
                continue
            if query.max_resolution and structure.resolution > query.max_resolution:
                continue
            
            filtered_structures.append(structure)
        
        # self._debug_print(f"Structures after resolution filter: {len(filtered_structures)}")
        
        # 4. Resolution 기준으로 정렬
        filtered_structures.sort(key=lambda x: x.resolution)
        
        return filtered_structures
def main():
    # 검색 엔진 초기화
    search_engine = ProteinSearchEngine(debug=True)
    
    # 전체 검색 (resolution 5 이하)
    query = ProteinQuery(
        name="human hemoglobin A",
        max_resolution=5.0  # resolution 제한 완화
    )
    
    # 검색 실행
    results = search_engine.search(query)
    
    # 결과를 파일로 출력
    with open('protein_search_results.txt', 'w') as f:
        f.write(f"Search Query: {query.name}\n")
        if query.organism:
            f.write(f"Organism: {query.organism}\n")
        f.write(f"Resolution Filter: <= {query.max_resolution} Å\n\n")
        
        f.write(f"Found {len(results)} structures matching the criteria:\n")
        for i, structure in enumerate(results, 1):
            f.write(f"\n{i}. PDB ID: {structure.pdb_id}\n")
            f.write(f"   Resolution: {structure.resolution:.2f} Å\n")
            f.write(f"   Method: {structure.method}\n")
            f.write(f"   Title: {structure.title}\n")
            f.write(f"   Release Date: {structure.release_date}\n")
            f.write(f"   Sequence Length: {len(structure.sequence)} aa\n")
            f.write(f"   Sequence:\n{structure.sequence}\n")
            f.write("-" * 80 + "\n")
    
    print(f"Results have been saved to 'protein_search_results.txt'")
if __name__ == "__main__":
    main() |