File size: 9,889 Bytes
0a5b75c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

""" 
    Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker.
    ERes2Net incorporates both local and global feature fusion techniques to improve the performance. 
    The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal.
    The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal.
"""


import torch
import math
import torch.nn as nn
import torch.nn.functional as F
import pooling_layers as pooling_layers
from fusion import AFF

class ReLU(nn.Hardtanh):

    def __init__(self, inplace=False):
        super(ReLU, self).__init__(0, 20, inplace)

    def __repr__(self):
        inplace_str = 'inplace' if self.inplace else ''
        return self.__class__.__name__ + ' (' \
            + inplace_str + ')'


class BasicBlockERes2Net(nn.Module):
    expansion = 2

    def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2):
        super(BasicBlockERes2Net, self).__init__()
        width = int(math.floor(planes*(baseWidth/64.0)))
        self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(width*scale)
        self.nums = scale

        convs=[]
        bns=[]
        for i in range(self.nums):
        	convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
        	bns.append(nn.BatchNorm2d(width))
        self.convs = nn.ModuleList(convs)
        self.bns = nn.ModuleList(bns)
        self.relu = ReLU(inplace=True)
        
        self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes*self.expansion)
        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1,
                          stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes))
        self.stride = stride
        self.width = width
        self.scale = scale

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        spx = torch.split(out,self.width,1)
        for i in range(self.nums):
        	if i==0:
        		sp = spx[i]
        	else:
        		sp = sp + spx[i]
        	sp = self.convs[i](sp)
        	sp = self.relu(self.bns[i](sp))
        	if i==0:
        		out = sp
        	else:
        		out = torch.cat((out,sp),1)

        out = self.conv3(out)
        out = self.bn3(out)

        residual = self.shortcut(x)
        out += residual
        out = self.relu(out)

        return out

class BasicBlockERes2Net_diff_AFF(nn.Module):
    expansion = 2

    def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2):
        super(BasicBlockERes2Net_diff_AFF, self).__init__()
        width = int(math.floor(planes*(baseWidth/64.0)))
        self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(width*scale)
        self.nums = scale

        convs=[]
        fuse_models=[]
        bns=[]
        for i in range(self.nums):
        	convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
        	bns.append(nn.BatchNorm2d(width))
        for j in range(self.nums - 1):
            fuse_models.append(AFF(channels=width))

        self.convs = nn.ModuleList(convs)
        self.bns = nn.ModuleList(bns)
        self.fuse_models = nn.ModuleList(fuse_models)
        self.relu = ReLU(inplace=True)
        
        self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes*self.expansion)
        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1,
                          stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes))
        self.stride = stride
        self.width = width
        self.scale = scale

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        spx = torch.split(out,self.width,1)     
        for i in range(self.nums):
            if i==0:
                sp = spx[i]
            else:
                sp = self.fuse_models[i-1](sp, spx[i])
                
            sp = self.convs[i](sp)
            sp = self.relu(self.bns[i](sp))
            if i==0:
                out = sp
            else:
                out = torch.cat((out,sp),1)

        out = self.conv3(out)
        out = self.bn3(out)

        residual = self.shortcut(x)
        out += residual
        out = self.relu(out)

        return out

class ERes2Net(nn.Module):
    def __init__(self,
                 block=BasicBlockERes2Net,
                 block_fuse=BasicBlockERes2Net_diff_AFF,
                 num_blocks=[3, 4, 6, 3],
                 m_channels=32,
                 feat_dim=80,
                 embedding_size=192,
                 pooling_func='TSTP',
                 two_emb_layer=False):
        super(ERes2Net, self).__init__()
        self.in_planes = m_channels
        self.feat_dim = feat_dim
        self.embedding_size = embedding_size
        self.stats_dim = int(feat_dim / 8) * m_channels * 8
        self.two_emb_layer = two_emb_layer

        self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(m_channels)
        self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block_fuse, m_channels * 4, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block_fuse, m_channels * 8, num_blocks[3], stride=2)

        # Downsampling module for each layer
        self.layer1_downsample = nn.Conv2d(m_channels * 2, m_channels * 4, kernel_size=3, stride=2, padding=1, bias=False)
        self.layer2_downsample = nn.Conv2d(m_channels * 4, m_channels * 8, kernel_size=3, padding=1, stride=2, bias=False)
        self.layer3_downsample = nn.Conv2d(m_channels * 8, m_channels * 16, kernel_size=3, padding=1, stride=2, bias=False)

        # Bottom-up fusion module
        self.fuse_mode12 = AFF(channels=m_channels * 4)
        self.fuse_mode123 = AFF(channels=m_channels * 8)
        self.fuse_mode1234 = AFF(channels=m_channels * 16)

        self.n_stats = 1 if pooling_func == 'TAP' or pooling_func == "TSDP" else 2
        self.pool = getattr(pooling_layers, pooling_func)(
            in_dim=self.stats_dim * block.expansion)
        self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats,
                               embedding_size)
        if self.two_emb_layer:
            self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False)
            self.seg_2 = nn.Linear(embedding_size, embedding_size)
        else:
            self.seg_bn_1 = nn.Identity()
            self.seg_2 = nn.Identity()

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        x = x.permute(0, 2, 1)  # (B,T,F) => (B,F,T)
        x = x.unsqueeze_(1)
        out = F.relu(self.bn1(self.conv1(x)))
        out1 = self.layer1(out)
        out2 = self.layer2(out1)
        out1_downsample = self.layer1_downsample(out1)
        fuse_out12 = self.fuse_mode12(out2, out1_downsample)   
        out3 = self.layer3(out2)
        fuse_out12_downsample = self.layer2_downsample(fuse_out12)
        fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
        out4 = self.layer4(out3)
        fuse_out123_downsample = self.layer3_downsample(fuse_out123)
        fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample)
        stats = self.pool(fuse_out1234)

        embed_a = self.seg_1(stats)
        if self.two_emb_layer:
            out = F.relu(embed_a)
            out = self.seg_bn_1(out)
            embed_b = self.seg_2(out)
            return embed_b
        else:
            return embed_a

    def forward3(self, x):
        x = x.permute(0, 2, 1)  # (B,T,F) => (B,F,T)
        x = x.unsqueeze_(1)
        out = F.relu(self.bn1(self.conv1(x)))
        out1 = self.layer1(out)
        out2 = self.layer2(out1)
        out1_downsample = self.layer1_downsample(out1)
        fuse_out12 = self.fuse_mode12(out2, out1_downsample)
        out3 = self.layer3(out2)
        fuse_out12_downsample = self.layer2_downsample(fuse_out12)
        fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
        out4 = self.layer4(out3)
        fuse_out123_downsample = self.layer3_downsample(fuse_out123)
        fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1,end_dim=2).mean(-1)
        return fuse_out1234


if __name__ == '__main__':

    x = torch.zeros(10, 300, 80)
    model = ERes2Net(feat_dim=80, embedding_size=192, pooling_func='TSTP')
    model.eval()
    out = model(x)
    print(out.shape) # torch.Size([10, 192])

    num_params = sum(param.numel() for param in model.parameters())
    print("{} M".format(num_params / 1e6)) # 6.61M