HumanSD / mmpretrain /models /utils /huggingface.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
import contextlib
from typing import Optional
import transformers
from mmengine.registry import Registry
from transformers import AutoConfig, PreTrainedModel
from transformers.models.auto.auto_factory import _BaseAutoModelClass
from mmpretrain.registry import MODELS, TOKENIZER
def register_hf_tokenizer(
cls: Optional[type] = None,
registry: Registry = TOKENIZER,
):
"""Register HuggingFace-style PreTrainedTokenizerBase class."""
if cls is None:
# use it as a decorator: @register_hf_tokenizer()
def _register(cls):
register_hf_tokenizer(cls=cls)
return cls
return _register
def from_pretrained(**kwargs):
if ('pretrained_model_name_or_path' not in kwargs
and 'name_or_path' not in kwargs):
raise TypeError(
f'{cls.__name__}.from_pretrained() missing required '
"argument 'pretrained_model_name_or_path' or 'name_or_path'.")
# `pretrained_model_name_or_path` is too long for config,
# add an alias name `name_or_path` here.
name_or_path = kwargs.pop('pretrained_model_name_or_path',
kwargs.pop('name_or_path'))
return cls.from_pretrained(name_or_path, **kwargs)
registry._register_module(module=from_pretrained, module_name=cls.__name__)
return cls
_load_hf_pretrained_model = True
@contextlib.contextmanager
def no_load_hf_pretrained_model():
global _load_hf_pretrained_model
_load_hf_pretrained_model = False
yield
_load_hf_pretrained_model = True
def register_hf_model(
cls: Optional[type] = None,
registry: Registry = MODELS,
):
"""Register HuggingFace-style PreTrainedModel class."""
if cls is None:
# use it as a decorator: @register_hf_tokenizer()
def _register(cls):
register_hf_model(cls=cls)
return cls
return _register
if issubclass(cls, _BaseAutoModelClass):
get_config = AutoConfig.from_pretrained
from_config = cls.from_config
elif issubclass(cls, PreTrainedModel):
get_config = cls.config_class.from_pretrained
from_config = cls
else:
raise TypeError('Not auto model nor pretrained model of huggingface.')
def build(**kwargs):
if ('pretrained_model_name_or_path' not in kwargs
and 'name_or_path' not in kwargs):
raise TypeError(
f'{cls.__name__} missing required argument '
'`pretrained_model_name_or_path` or `name_or_path`.')
# `pretrained_model_name_or_path` is too long for config,
# add an alias name `name_or_path` here.
name_or_path = kwargs.pop('pretrained_model_name_or_path',
kwargs.pop('name_or_path'))
if kwargs.pop('load_pretrained', True) and _load_hf_pretrained_model:
return cls.from_pretrained(name_or_path, **kwargs)
else:
cfg = get_config(name_or_path, **kwargs)
return from_config(cfg)
registry._register_module(module=build, module_name=cls.__name__)
return cls
register_hf_model(transformers.AutoModelForCausalLM)