Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
from einops import rearrange | |
from mmengine.model import BaseModule | |
from mmengine.model.weight_init import trunc_normal_ | |
from torch import nn | |
from mmpretrain.models.backbones import BEiTViT | |
from mmpretrain.models.utils import NormEMAVectorQuantizer, resize_pos_embed | |
from mmpretrain.registry import MODELS | |
from mmpretrain.structures import DataSample | |
from .base import BaseSelfSupervisor | |
class VQKD(BaseModule): | |
"""Vector-Quantized Knowledge Distillation. | |
The module only contains encoder and VectorQuantizer part | |
Modified from https://github.com/microsoft/unilm/blob/master/beit2/modeling_vqkd.py | |
Args: | |
encoder_config (dict): The config of encoder. | |
decoder_config (dict, optional): The config of decoder. Currently, | |
VQKD only support to build encoder. Defaults to None. | |
num_embed (int): Number of embedding vectors in the codebook. Defaults | |
to 8192. | |
embed_dims (int) : The dimension of embedding vectors in the codebook. | |
Defaults to 32. | |
decay (float): The decay parameter of EMA. Defaults to 0.99. | |
beta (float): The mutiplier for VectorQuantizer loss. Defaults to 1. | |
quantize_kmeans_init (bool): Whether to use k-means to initialize the | |
VectorQuantizer. Defaults to True. | |
init_cfg (dict or List[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" # noqa: E501 | |
def __init__(self, | |
encoder_config: dict, | |
decoder_config: Optional[dict] = None, | |
num_embed: int = 8192, | |
embed_dims: int = 32, | |
decay: float = 0.99, | |
beta: float = 1.0, | |
quantize_kmeans_init: bool = True, | |
init_cfg: Optional[dict] = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.encoder = BEiTViT(**encoder_config) | |
if decoder_config is not None: | |
self.decoder = BEiTViT(**decoder_config) | |
self.quantize = NormEMAVectorQuantizer( | |
num_embed=num_embed, | |
embed_dims=embed_dims, | |
beta=beta, | |
decay=decay, | |
kmeans_init=quantize_kmeans_init, | |
) | |
# task layer | |
self.encode_task_layer = nn.Sequential( | |
nn.Linear(self.encoder.arch_settings['embed_dims'], | |
self.encoder.arch_settings['embed_dims']), nn.Tanh(), | |
nn.Linear(self.encoder.arch_settings['embed_dims'], embed_dims)) | |
def get_tokens(self, x: torch.Tensor) -> dict: | |
"""Get tokens for beit pre-training.""" | |
_, embed_ind, _ = self.encode(x) | |
output = {} | |
output['token'] = embed_ind.view(x.shape[0], -1) | |
output['input_img'] = x | |
return output | |
def encode( | |
self, x: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Encode the input images and get corresponding results.""" | |
encoder_features = self.encoder(x)[0] | |
B, C, N1, N2 = encoder_features.shape | |
encoder_features = encoder_features.permute(0, 2, 3, | |
1).reshape(B, N1 * N2, C) | |
with torch.cuda.amp.autocast(enabled=False): | |
to_quantizer_features = self.encode_task_layer( | |
encoder_features.type_as(self.encode_task_layer[-1].weight)) | |
N = to_quantizer_features.shape[1] | |
h, w = int(math.sqrt(N)), int(math.sqrt(N)) | |
to_quantizer_features = rearrange( | |
to_quantizer_features, 'b (h w) c -> b c h w', h=h, | |
w=w) # reshape for quantizer | |
quantize, loss, embed_ind = self.quantize(to_quantizer_features) | |
return quantize, embed_ind, loss | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""The forward function. | |
Currently, only support to get tokens. | |
""" | |
return self.get_tokens(x)['token'] | |
class BEiTPretrainViT(BEiTViT): | |
"""Vision Transformer for BEiT pre-training. | |
Args: | |
arch (str | dict): Vision Transformer architecture. If use string, | |
choose from 'small', 'base' and 'large'. If use dict, it should | |
have below keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **num_layers** (int): The number of transformer encoder layers. | |
- **num_heads** (int): The number of heads in attention modules. | |
- **feedforward_channels** (int): The hidden dimensions in | |
feedforward modules. | |
Defaults to 'base'. | |
img_size (int | tuple): The expected input image shape. Because we | |
support dynamic input shape, just set the argument to the most | |
common input image shape. Defaults to 224. | |
patch_size (int | tuple): The patch size in patch embedding. | |
Defaults to 16. | |
in_channels (int): The num of input channels. Defaults to 3. | |
out_indices (Sequence | int): Output from which stages. | |
Defaults to -1, means the last stage. | |
drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Defaults to True. | |
out_type (str): The type of output features. Please choose from | |
- ``"cls_token"``: The class token tensor with shape (B, C). | |
- ``"featmap"``: The feature map tensor from the patch tokens | |
with shape (B, C, H, W). | |
- ``"avg_featmap"``: The global averaged feature map tensor | |
with shape (B, C). | |
- ``"raw"``: The raw feature tensor includes patch tokens and | |
class tokens with shape (B, L, C). | |
It only works without input mask. Defaults to ``"avg_featmap"``. | |
with_cls_token (bool): Whether concatenating class token into image | |
tokens as transformer input. Defaults to True. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Defaults to -1. | |
use_abs_pos_emb (bool): Whether or not use absolute position embedding. | |
Defaults to False. | |
use_rel_pos_bias (bool): Whether or not use relative position bias. | |
Defaults to False. | |
use_shared_rel_pos_bias (bool): Whether or not use shared relative | |
position bias. Defaults to True. | |
layer_scale_init_value (float): The initialization value for | |
the learnable scaling of attention and FFN. Defaults to 0.1. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Defaults to "bicubic". | |
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. | |
layer_cfgs (Sequence | dict): Configs of each transformer layer in | |
encoder. Defaults to an empty dict. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
arch: str = 'base', | |
img_size: int = 224, | |
patch_size: int = 16, | |
in_channels: int = 3, | |
out_indices: int = -1, | |
drop_rate: float = 0, | |
drop_path_rate: float = 0, | |
norm_cfg: dict = dict(type='LN', eps=1e-6), | |
final_norm: bool = True, | |
out_type: str = 'raw', | |
frozen_stages: int = -1, | |
use_abs_pos_emb: bool = False, | |
use_rel_pos_bias: bool = False, | |
use_shared_rel_pos_bias: bool = True, | |
layer_scale_init_value: int = 0.1, | |
interpolate_mode: str = 'bicubic', | |
patch_cfg: dict = dict(padding=0), | |
layer_cfgs: dict = dict(), | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__( | |
arch=arch, | |
img_size=img_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
out_indices=out_indices, | |
drop_rate=drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_cfg=norm_cfg, | |
final_norm=final_norm, | |
out_type=out_type, | |
with_cls_token=True, | |
frozen_stages=frozen_stages, | |
use_abs_pos_emb=use_abs_pos_emb, | |
use_shared_rel_pos_bias=use_shared_rel_pos_bias, | |
use_rel_pos_bias=use_rel_pos_bias, | |
layer_scale_init_value=layer_scale_init_value, | |
interpolate_mode=interpolate_mode, | |
patch_cfg=patch_cfg, | |
layer_cfgs=layer_cfgs, | |
init_cfg=init_cfg) | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims)) | |
def init_weights(self) -> None: | |
"""Initialize position embedding, patch embedding and cls token.""" | |
super().init_weights() | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg['type'] == 'Pretrained'): | |
# Suppress default init if use pretrained model. | |
return | |
trunc_normal_(self.cls_token, std=0.02) | |
trunc_normal_(self.mask_token, std=0.02) | |
self.rescale_init_weight() | |
def rescale_init_weight(self) -> None: | |
"""Rescale the initialized weights.""" | |
def rescale(param, layer_id): | |
param.div_(math.sqrt(2.0 * layer_id)) | |
for layer_id, layer in enumerate(self.layers): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
rescale(layer.ffn.layers[1].weight.data, layer_id + 1) | |
def forward(self, x: torch.Tensor, | |
mask: Optional[torch.Tensor]) -> Tuple[torch.Tensor]: | |
"""The BEiT style forward function. | |
The function supports two kind of forward behaviors. If the ``mask`` is | |
not ``None``, the forward function will be executed as masked image | |
modeling pre-training; if the ``mask`` is ``None``, the forward | |
function will call ``super().forward()``, which extract features from | |
images without mask. | |
Args: | |
x (torch.Tensor): Input images, which is of shape (B x C x H x W). | |
mask (torch.Tensor, optional): Mask for input, which is of shape | |
(B x patch_resolution[0] x patch_resolution[1]). | |
Returns: | |
Tuple[torch.Tensor]: Hidden features. | |
""" | |
if mask is None: | |
return super().forward(x) | |
else: | |
x, patch_resolution = self.patch_embed(x) | |
# replace the masked visual tokens by mask_token | |
B, L, _ = x.shape | |
mask_token = self.mask_token.expand(B, L, -1) | |
w = mask.flatten(1).unsqueeze(-1).type_as(mask_token) | |
x = x * (1. - w) + mask_token * w | |
# stole cls_tokens impl from Phil Wang, thanks | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
if self.pos_embed is not None: | |
x = x + resize_pos_embed( | |
self.pos_embed, | |
self.patch_resolution, | |
patch_resolution, | |
mode=self.interpolate_mode, | |
num_extra_tokens=self.num_extra_tokens) | |
x = self.drop_after_pos(x) | |
self.shared_rel_pos_bias = self.rel_pos_bias().to( | |
mask.device) if self.rel_pos_bias is not None else None | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x, rel_pos_bias=self.shared_rel_pos_bias) | |
if i == len(self.layers) - 1 and self.final_norm: | |
x = self.norm1(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |
class BEiT(BaseSelfSupervisor): | |
"""BEiT v1/v2. | |
Implementation of `BEiT: BERT Pre-Training of Image Transformers | |
<https://arxiv.org/abs/2106.08254>`_ and `BEiT v2: Masked Image Modeling | |
with Vector-Quantized Visual Tokenizers | |
<https://arxiv.org/abs/2208.06366>`_. | |
""" | |
def extract_feat(self, inputs: torch.Tensor): | |
return self.backbone(inputs, mask=None) | |
def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample], | |
**kwargs) -> Dict[str, torch.Tensor]: | |
"""The forward function in training. | |
Args: | |
inputs (List[torch.Tensor]): The input images. | |
data_samples (List[DataSample]): All elements required | |
during the forward function. | |
Returns: | |
Dict[str, torch.Tensor]: A dictionary of loss components. | |
""" | |
mask = torch.stack([data_sample.mask for data_sample in data_samples]) | |
img_latent = self.backbone(inputs[0], mask) | |
# inputs[1] is the target image | |
with torch.no_grad(): | |
target = self.target_generator(inputs[1]) | |
target = target.detach() | |
if self.with_neck: | |
# BEiT v2 | |
feats, feats_cls_pt = self.neck( | |
img_latent, rel_pos_bias=self.backbone.shared_rel_pos_bias) | |
loss = self.head.loss(feats, feats_cls_pt, target, mask) | |
else: | |
# BEiT v1 | |
loss = self.head.loss(img_latent[0], target, mask) | |
if isinstance(loss, torch.Tensor): | |
losses = dict(loss=loss) | |
return losses | |
elif isinstance(loss, Tuple): | |
# the loss_1 and loss_2 are general reconstruction loss (patch | |
# feature vectors from last layer of backbone) and early state | |
# reconstruction loss (patch feature vectors from intermediate | |
# layer of backbone) | |
loss_1, loss_2 = loss[0], loss[1] | |
losses = dict() | |
# the key with prefix 'loss', like loss_1 and loss_2, will be used | |
# as the final criterion | |
losses['loss_1'] = loss_1 | |
losses['loss_2'] = loss_2 | |
return losses | |