Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from mmengine.model import BaseModule | |
from mmpretrain.evaluation import Accuracy | |
from mmpretrain.registry import MODELS | |
class Pooler(nn.Module): | |
def __init__(self, hidden_size): | |
super().__init__() | |
self.dense = nn.Linear(hidden_size, hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class ITMHead(BaseModule): | |
"""Image-text matching head for multi-modal pre-trained task. Adapted by | |
BLIP, FLAVA. | |
Args: | |
hidden_size (int): Hidden channel size out input features. | |
with_pooler (bool): Whether a pooler is added. Defaults to True. | |
loss (dict): Config of global contrasive loss. Defaults to | |
``dict(type='GlobalContrasiveLoss')``. | |
cal_acc (bool): Whether to calculate accuracy during training. | |
If you use batch augmentations like Mixup and CutMix during | |
training, it is pointless to calculate accuracy. | |
Defaults to False. | |
init_cfg (dict, optional): the config to control the initialization. | |
Defaults to None. | |
""" | |
def __init__(self, | |
hidden_size: int, | |
with_pooler: bool = True, | |
loss: dict = dict(type='CrossEntropyLoss', loss_weight=1.0), | |
cal_acc: bool = False, | |
init_cfg: Optional[dict] = None): | |
super(ITMHead, self).__init__(init_cfg=init_cfg) | |
self.hidden_size = hidden_size | |
if with_pooler: | |
self.pooler = Pooler(hidden_size=self.hidden_size) | |
else: | |
self.pooler = nn.Identity() | |
self.fc = nn.Linear(self.hidden_size, 2) | |
self.loss_module = MODELS.build(loss) | |
self.cal_acc = cal_acc | |
def forward(self, feats: Tuple[torch.Tensor]) -> torch.Tensor: | |
"""The forward process.""" | |
pre_logits = self.pooler(feats[-1]) | |
itm_logits = self.fc(pre_logits) | |
return itm_logits | |
def loss(self, feats: Tuple[torch.Tensor], data_samples, **kwargs) -> dict: | |
"""Calculate losses from the classification score. | |
Args: | |
feats (tuple[Tensor]): The features extracted from the backbone. | |
Multiple stage inputs are acceptable but only the last stage | |
will be used to classify. The shape of every item should be | |
``(num_samples, num_classes)``. | |
data_samples (List[ClsDataSample]): The annotation data of | |
every samples. | |
**kwargs: Other keyword arguments to forward the loss module. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
# The part can be traced by torch.fx | |
itm_logits = self(feats) | |
# deal with query | |
if itm_logits.ndim == 3: | |
itm_logits = itm_logits.mean(dim=1) | |
# The part can not be traced by torch.fx | |
losses = self._get_loss(itm_logits, data_samples, **kwargs) | |
return losses | |
def _get_loss(self, itm_logits: torch.Tensor, data_samples, **kwargs): | |
"""Unpack data samples and compute loss.""" | |
# Unpack data samples and pack targets | |
# use `itm_label` in here temporarily | |
target = torch.tensor([i.is_matched | |
for i in data_samples]).to(itm_logits.device) | |
# compute loss | |
losses = dict() | |
loss = self.loss_module( | |
itm_logits, target.long(), avg_factor=itm_logits.size(0), **kwargs) | |
losses['itm_loss'] = loss | |
# compute accuracy | |
if self.cal_acc: | |
# topk is meaningless for matching task | |
acc = Accuracy.calculate(itm_logits, target) | |
# acc is warpped with two lists of topk and thrs | |
# which are unnecessary here | |
losses.update({'itm_accuracy': acc[0][0]}) | |
return losses | |