liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple
import torch
import torch.nn as nn
from mmengine.model import BaseModule
from mmpretrain.evaluation import Accuracy
from mmpretrain.registry import MODELS
class Pooler(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
@MODELS.register_module()
class ITMHead(BaseModule):
"""Image-text matching head for multi-modal pre-trained task. Adapted by
BLIP, FLAVA.
Args:
hidden_size (int): Hidden channel size out input features.
with_pooler (bool): Whether a pooler is added. Defaults to True.
loss (dict): Config of global contrasive loss. Defaults to
``dict(type='GlobalContrasiveLoss')``.
cal_acc (bool): Whether to calculate accuracy during training.
If you use batch augmentations like Mixup and CutMix during
training, it is pointless to calculate accuracy.
Defaults to False.
init_cfg (dict, optional): the config to control the initialization.
Defaults to None.
"""
def __init__(self,
hidden_size: int,
with_pooler: bool = True,
loss: dict = dict(type='CrossEntropyLoss', loss_weight=1.0),
cal_acc: bool = False,
init_cfg: Optional[dict] = None):
super(ITMHead, self).__init__(init_cfg=init_cfg)
self.hidden_size = hidden_size
if with_pooler:
self.pooler = Pooler(hidden_size=self.hidden_size)
else:
self.pooler = nn.Identity()
self.fc = nn.Linear(self.hidden_size, 2)
self.loss_module = MODELS.build(loss)
self.cal_acc = cal_acc
def forward(self, feats: Tuple[torch.Tensor]) -> torch.Tensor:
"""The forward process."""
pre_logits = self.pooler(feats[-1])
itm_logits = self.fc(pre_logits)
return itm_logits
def loss(self, feats: Tuple[torch.Tensor], data_samples, **kwargs) -> dict:
"""Calculate losses from the classification score.
Args:
feats (tuple[Tensor]): The features extracted from the backbone.
Multiple stage inputs are acceptable but only the last stage
will be used to classify. The shape of every item should be
``(num_samples, num_classes)``.
data_samples (List[ClsDataSample]): The annotation data of
every samples.
**kwargs: Other keyword arguments to forward the loss module.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
# The part can be traced by torch.fx
itm_logits = self(feats)
# deal with query
if itm_logits.ndim == 3:
itm_logits = itm_logits.mean(dim=1)
# The part can not be traced by torch.fx
losses = self._get_loss(itm_logits, data_samples, **kwargs)
return losses
def _get_loss(self, itm_logits: torch.Tensor, data_samples, **kwargs):
"""Unpack data samples and compute loss."""
# Unpack data samples and pack targets
# use `itm_label` in here temporarily
target = torch.tensor([i.is_matched
for i in data_samples]).to(itm_logits.device)
# compute loss
losses = dict()
loss = self.loss_module(
itm_logits, target.long(), avg_factor=itm_logits.size(0), **kwargs)
losses['itm_loss'] = loss
# compute accuracy
if self.cal_acc:
# topk is meaningless for matching task
acc = Accuracy.calculate(itm_logits, target)
# acc is warpped with two lists of topk and thrs
# which are unnecessary here
losses.update({'itm_accuracy': acc[0][0]})
return losses