Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from copy import deepcopy | |
from typing import Sequence | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn import build_norm_layer | |
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed, PatchMerging | |
from mmengine.model import BaseModule, ModuleList | |
from mmengine.model.weight_init import trunc_normal_ | |
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm | |
from mmpretrain.registry import MODELS | |
from ..utils import (ShiftWindowMSA, resize_pos_embed, | |
resize_relative_position_bias_table, to_2tuple) | |
from .base_backbone import BaseBackbone | |
class SwinBlock(BaseModule): | |
"""Swin Transformer block. | |
Args: | |
embed_dims (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
window_size (int): The height and width of the window. Defaults to 7. | |
shift (bool): Shift the attention window or not. Defaults to False. | |
ffn_ratio (float): The expansion ratio of feedforward network hidden | |
layer channels. Defaults to 4. | |
drop_path (float): The drop path rate after attention and ffn. | |
Defaults to 0. | |
pad_small_map (bool): If True, pad the small feature map to the window | |
size, which is common used in detection and segmentation. If False, | |
avoid shifting window and shrink the window size to the size of | |
feature map, which is common used in classification. | |
Defaults to False. | |
attn_cfgs (dict): The extra config of Shift Window-MSA. | |
Defaults to empty dict. | |
ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict. | |
norm_cfg (dict): The config of norm layers. | |
Defaults to ``dict(type='LN')``. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Defaults to False. | |
init_cfg (dict, optional): The extra config for initialization. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims, | |
num_heads, | |
window_size=7, | |
shift=False, | |
ffn_ratio=4., | |
drop_path=0., | |
pad_small_map=False, | |
attn_cfgs=dict(), | |
ffn_cfgs=dict(), | |
norm_cfg=dict(type='LN'), | |
with_cp=False, | |
init_cfg=None): | |
super(SwinBlock, self).__init__(init_cfg) | |
self.with_cp = with_cp | |
_attn_cfgs = { | |
'embed_dims': embed_dims, | |
'num_heads': num_heads, | |
'shift_size': window_size // 2 if shift else 0, | |
'window_size': window_size, | |
'dropout_layer': dict(type='DropPath', drop_prob=drop_path), | |
'pad_small_map': pad_small_map, | |
**attn_cfgs | |
} | |
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1] | |
self.attn = ShiftWindowMSA(**_attn_cfgs) | |
_ffn_cfgs = { | |
'embed_dims': embed_dims, | |
'feedforward_channels': int(embed_dims * ffn_ratio), | |
'num_fcs': 2, | |
'ffn_drop': 0, | |
'dropout_layer': dict(type='DropPath', drop_prob=drop_path), | |
'act_cfg': dict(type='GELU'), | |
**ffn_cfgs | |
} | |
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1] | |
self.ffn = FFN(**_ffn_cfgs) | |
def forward(self, x, hw_shape): | |
def _inner_forward(x): | |
identity = x | |
x = self.norm1(x) | |
x = self.attn(x, hw_shape) | |
x = x + identity | |
identity = x | |
x = self.norm2(x) | |
x = self.ffn(x, identity=identity) | |
return x | |
if self.with_cp and x.requires_grad: | |
x = cp.checkpoint(_inner_forward, x) | |
else: | |
x = _inner_forward(x) | |
return x | |
class SwinBlockSequence(BaseModule): | |
"""Module with successive Swin Transformer blocks and downsample layer. | |
Args: | |
embed_dims (int): Number of input channels. | |
depth (int): Number of successive swin transformer blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): The height and width of the window. Defaults to 7. | |
downsample (bool): Downsample the output of blocks by patch merging. | |
Defaults to False. | |
downsample_cfg (dict): The extra config of the patch merging layer. | |
Defaults to empty dict. | |
drop_paths (Sequence[float] | float): The drop path rate in each block. | |
Defaults to 0. | |
block_cfgs (Sequence[dict] | dict): The extra config of each block. | |
Defaults to empty dicts. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Defaults to False. | |
pad_small_map (bool): If True, pad the small feature map to the window | |
size, which is common used in detection and segmentation. If False, | |
avoid shifting window and shrink the window size to the size of | |
feature map, which is common used in classification. | |
Defaults to False. | |
init_cfg (dict, optional): The extra config for initialization. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims, | |
depth, | |
num_heads, | |
window_size=7, | |
downsample=False, | |
downsample_cfg=dict(), | |
drop_paths=0., | |
block_cfgs=dict(), | |
with_cp=False, | |
pad_small_map=False, | |
init_cfg=None): | |
super().__init__(init_cfg) | |
if not isinstance(drop_paths, Sequence): | |
drop_paths = [drop_paths] * depth | |
if not isinstance(block_cfgs, Sequence): | |
block_cfgs = [deepcopy(block_cfgs) for _ in range(depth)] | |
self.embed_dims = embed_dims | |
self.blocks = ModuleList() | |
for i in range(depth): | |
_block_cfg = { | |
'embed_dims': embed_dims, | |
'num_heads': num_heads, | |
'window_size': window_size, | |
'shift': False if i % 2 == 0 else True, | |
'drop_path': drop_paths[i], | |
'with_cp': with_cp, | |
'pad_small_map': pad_small_map, | |
**block_cfgs[i] | |
} | |
block = SwinBlock(**_block_cfg) | |
self.blocks.append(block) | |
if downsample: | |
_downsample_cfg = { | |
'in_channels': embed_dims, | |
'out_channels': 2 * embed_dims, | |
'norm_cfg': dict(type='LN'), | |
**downsample_cfg | |
} | |
self.downsample = PatchMerging(**_downsample_cfg) | |
else: | |
self.downsample = None | |
def forward(self, x, in_shape, do_downsample=True): | |
for block in self.blocks: | |
x = block(x, in_shape) | |
if self.downsample is not None and do_downsample: | |
x, out_shape = self.downsample(x, in_shape) | |
else: | |
out_shape = in_shape | |
return x, out_shape | |
def out_channels(self): | |
if self.downsample: | |
return self.downsample.out_channels | |
else: | |
return self.embed_dims | |
class SwinTransformer(BaseBackbone): | |
"""Swin Transformer. | |
A PyTorch implement of : `Swin Transformer: | |
Hierarchical Vision Transformer using Shifted Windows | |
<https://arxiv.org/abs/2103.14030>`_ | |
Inspiration from | |
https://github.com/microsoft/Swin-Transformer | |
Args: | |
arch (str | dict): Swin Transformer architecture. If use string, choose | |
from 'tiny', 'small', 'base' and 'large'. If use dict, it should | |
have below keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **depths** (List[int]): The number of blocks in each stage. | |
- **num_heads** (List[int]): The number of heads in attention | |
modules of each stage. | |
Defaults to 'tiny'. | |
img_size (int | tuple): The expected input image shape. Because we | |
support dynamic input shape, just set the argument to the most | |
common input image shape. Defaults to 224. | |
patch_size (int | tuple): The patch size in patch embedding. | |
Defaults to 4. | |
in_channels (int): The num of input channels. Defaults to 3. | |
window_size (int): The height and width of the window. Defaults to 7. | |
drop_rate (float): Dropout rate after embedding. Defaults to 0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0.1. | |
out_after_downsample (bool): Whether to output the feature map of a | |
stage after the following downsample layer. Defaults to False. | |
use_abs_pos_embed (bool): If True, add absolute position embedding to | |
the patch embedding. Defaults to False. | |
interpolate_mode (str): Select the interpolate mode for absolute | |
position embeding vector resize. Defaults to "bicubic". | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Defaults to False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Defaults to -1. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Defaults to False. | |
pad_small_map (bool): If True, pad the small feature map to the window | |
size, which is common used in detection and segmentation. If False, | |
avoid shifting window and shrink the window size to the size of | |
feature map, which is common used in classification. | |
Defaults to False. | |
norm_cfg (dict): Config dict for normalization layer for all output | |
features. Defaults to ``dict(type='LN')`` | |
stage_cfgs (Sequence[dict] | dict): Extra config dict for each | |
stage. Defaults to an empty dict. | |
patch_cfg (dict): Extra config dict for patch embedding. | |
Defaults to an empty dict. | |
init_cfg (dict, optional): The Config for initialization. | |
Defaults to None. | |
Examples: | |
>>> from mmpretrain.models import SwinTransformer | |
>>> import torch | |
>>> extra_config = dict( | |
>>> arch='tiny', | |
>>> stage_cfgs=dict(downsample_cfg={'kernel_size': 3, | |
>>> 'expansion_ratio': 3})) | |
>>> self = SwinTransformer(**extra_config) | |
>>> inputs = torch.rand(1, 3, 224, 224) | |
>>> output = self.forward(inputs) | |
>>> print(output.shape) | |
(1, 2592, 4) | |
""" | |
arch_zoo = { | |
**dict.fromkeys(['t', 'tiny'], | |
{'embed_dims': 96, | |
'depths': [2, 2, 6, 2], | |
'num_heads': [3, 6, 12, 24]}), | |
**dict.fromkeys(['s', 'small'], | |
{'embed_dims': 96, | |
'depths': [2, 2, 18, 2], | |
'num_heads': [3, 6, 12, 24]}), | |
**dict.fromkeys(['b', 'base'], | |
{'embed_dims': 128, | |
'depths': [2, 2, 18, 2], | |
'num_heads': [4, 8, 16, 32]}), | |
**dict.fromkeys(['l', 'large'], | |
{'embed_dims': 192, | |
'depths': [2, 2, 18, 2], | |
'num_heads': [6, 12, 24, 48]}), | |
} # yapf: disable | |
_version = 3 | |
num_extra_tokens = 0 | |
def __init__(self, | |
arch='tiny', | |
img_size=224, | |
patch_size=4, | |
in_channels=3, | |
window_size=7, | |
drop_rate=0., | |
drop_path_rate=0.1, | |
out_indices=(3, ), | |
out_after_downsample=False, | |
use_abs_pos_embed=False, | |
interpolate_mode='bicubic', | |
with_cp=False, | |
frozen_stages=-1, | |
norm_eval=False, | |
pad_small_map=False, | |
norm_cfg=dict(type='LN'), | |
stage_cfgs=dict(), | |
patch_cfg=dict(), | |
init_cfg=None): | |
super(SwinTransformer, self).__init__(init_cfg=init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = {'embed_dims', 'depths', 'num_heads'} | |
assert isinstance(arch, dict) and set(arch) == essential_keys, \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims = self.arch_settings['embed_dims'] | |
self.depths = self.arch_settings['depths'] | |
self.num_heads = self.arch_settings['num_heads'] | |
self.num_layers = len(self.depths) | |
self.out_indices = out_indices | |
self.out_after_downsample = out_after_downsample | |
self.use_abs_pos_embed = use_abs_pos_embed | |
self.interpolate_mode = interpolate_mode | |
self.frozen_stages = frozen_stages | |
_patch_cfg = dict( | |
in_channels=in_channels, | |
input_size=img_size, | |
embed_dims=self.embed_dims, | |
conv_type='Conv2d', | |
kernel_size=patch_size, | |
stride=patch_size, | |
norm_cfg=dict(type='LN'), | |
) | |
_patch_cfg.update(patch_cfg) | |
self.patch_embed = PatchEmbed(**_patch_cfg) | |
self.patch_resolution = self.patch_embed.init_out_size | |
if self.use_abs_pos_embed: | |
num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
self.absolute_pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches, self.embed_dims)) | |
self._register_load_state_dict_pre_hook( | |
self._prepare_abs_pos_embed) | |
self._register_load_state_dict_pre_hook( | |
self._prepare_relative_position_bias_table) | |
self.drop_after_pos = nn.Dropout(p=drop_rate) | |
self.norm_eval = norm_eval | |
# stochastic depth | |
total_depth = sum(self.depths) | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, total_depth) | |
] # stochastic depth decay rule | |
self.stages = ModuleList() | |
embed_dims = [self.embed_dims] | |
for i, (depth, | |
num_heads) in enumerate(zip(self.depths, self.num_heads)): | |
if isinstance(stage_cfgs, Sequence): | |
stage_cfg = stage_cfgs[i] | |
else: | |
stage_cfg = deepcopy(stage_cfgs) | |
downsample = True if i < self.num_layers - 1 else False | |
_stage_cfg = { | |
'embed_dims': embed_dims[-1], | |
'depth': depth, | |
'num_heads': num_heads, | |
'window_size': window_size, | |
'downsample': downsample, | |
'drop_paths': dpr[:depth], | |
'with_cp': with_cp, | |
'pad_small_map': pad_small_map, | |
**stage_cfg | |
} | |
stage = SwinBlockSequence(**_stage_cfg) | |
self.stages.append(stage) | |
dpr = dpr[depth:] | |
embed_dims.append(stage.out_channels) | |
if self.out_after_downsample: | |
self.num_features = embed_dims[1:] | |
else: | |
self.num_features = embed_dims[:-1] | |
for i in out_indices: | |
if norm_cfg is not None: | |
norm_layer = build_norm_layer(norm_cfg, | |
self.num_features[i])[1] | |
else: | |
norm_layer = nn.Identity() | |
self.add_module(f'norm{i}', norm_layer) | |
def init_weights(self): | |
super(SwinTransformer, self).init_weights() | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg['type'] == 'Pretrained'): | |
# Suppress default init if use pretrained model. | |
return | |
if self.use_abs_pos_embed: | |
trunc_normal_(self.absolute_pos_embed, std=0.02) | |
def forward(self, x): | |
x, hw_shape = self.patch_embed(x) | |
if self.use_abs_pos_embed: | |
x = x + resize_pos_embed( | |
self.absolute_pos_embed, self.patch_resolution, hw_shape, | |
self.interpolate_mode, self.num_extra_tokens) | |
x = self.drop_after_pos(x) | |
outs = [] | |
for i, stage in enumerate(self.stages): | |
x, hw_shape = stage( | |
x, hw_shape, do_downsample=self.out_after_downsample) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f'norm{i}') | |
out = norm_layer(x) | |
out = out.view(-1, *hw_shape, | |
self.num_features[i]).permute(0, 3, 1, | |
2).contiguous() | |
outs.append(out) | |
if stage.downsample is not None and not self.out_after_downsample: | |
x, hw_shape = stage.downsample(x, hw_shape) | |
return tuple(outs) | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, *args, | |
**kwargs): | |
"""load checkpoints.""" | |
# Names of some parameters in has been changed. | |
version = local_metadata.get('version', None) | |
if (version is None | |
or version < 2) and self.__class__ is SwinTransformer: | |
final_stage_num = len(self.stages) - 1 | |
state_dict_keys = list(state_dict.keys()) | |
for k in state_dict_keys: | |
if k.startswith('norm.') or k.startswith('backbone.norm.'): | |
convert_key = k.replace('norm.', f'norm{final_stage_num}.') | |
state_dict[convert_key] = state_dict[k] | |
del state_dict[k] | |
if (version is None | |
or version < 3) and self.__class__ is SwinTransformer: | |
state_dict_keys = list(state_dict.keys()) | |
for k in state_dict_keys: | |
if 'attn_mask' in k: | |
del state_dict[k] | |
super()._load_from_state_dict(state_dict, prefix, local_metadata, | |
*args, **kwargs) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
for i in range(0, self.frozen_stages + 1): | |
m = self.stages[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
for i in self.out_indices: | |
if i <= self.frozen_stages: | |
for param in getattr(self, f'norm{i}').parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(SwinTransformer, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
# trick: eval have effect on BatchNorm only | |
if isinstance(m, _BatchNorm): | |
m.eval() | |
def _prepare_abs_pos_embed(self, state_dict, prefix, *args, **kwargs): | |
name = prefix + 'absolute_pos_embed' | |
if name not in state_dict.keys(): | |
return | |
ckpt_pos_embed_shape = state_dict[name].shape | |
if self.absolute_pos_embed.shape != ckpt_pos_embed_shape: | |
from mmengine.logging import MMLogger | |
logger = MMLogger.get_current_instance() | |
logger.info( | |
'Resize the absolute_pos_embed shape from ' | |
f'{ckpt_pos_embed_shape} to {self.absolute_pos_embed.shape}.') | |
ckpt_pos_embed_shape = to_2tuple( | |
int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens))) | |
pos_embed_shape = self.patch_embed.init_out_size | |
state_dict[name] = resize_pos_embed(state_dict[name], | |
ckpt_pos_embed_shape, | |
pos_embed_shape, | |
self.interpolate_mode, | |
self.num_extra_tokens) | |
def _prepare_relative_position_bias_table(self, state_dict, prefix, *args, | |
**kwargs): | |
state_dict_model = self.state_dict() | |
all_keys = list(state_dict_model.keys()) | |
for key in all_keys: | |
if 'relative_position_bias_table' in key: | |
ckpt_key = prefix + key | |
if ckpt_key not in state_dict: | |
continue | |
relative_position_bias_table_pretrained = state_dict[ckpt_key] | |
relative_position_bias_table_current = state_dict_model[key] | |
L1, nH1 = relative_position_bias_table_pretrained.size() | |
L2, nH2 = relative_position_bias_table_current.size() | |
if L1 != L2: | |
src_size = int(L1**0.5) | |
dst_size = int(L2**0.5) | |
new_rel_pos_bias = resize_relative_position_bias_table( | |
src_size, dst_size, | |
relative_position_bias_table_pretrained, nH1) | |
from mmengine.logging import MMLogger | |
logger = MMLogger.get_current_instance() | |
logger.info('Resize the relative_position_bias_table from ' | |
f'{state_dict[ckpt_key].shape} to ' | |
f'{new_rel_pos_bias.shape}') | |
state_dict[ckpt_key] = new_rel_pos_bias | |
# The index buffer need to be re-generated. | |
index_buffer = ckpt_key.replace('bias_table', 'index') | |
del state_dict[index_buffer] | |
def get_layer_depth(self, param_name: str, prefix: str = ''): | |
"""Get the layer-wise depth of a parameter. | |
Args: | |
param_name (str): The name of the parameter. | |
prefix (str): The prefix for the parameter. | |
Defaults to an empty string. | |
Returns: | |
Tuple[int, int]: The layer-wise depth and the num of layers. | |
Note: | |
The first depth is the stem module (``layer_depth=0``), and the | |
last depth is the subsequent module (``layer_depth=num_layers-1``) | |
""" | |
num_layers = sum(self.depths) + 2 | |
if not param_name.startswith(prefix): | |
# For subsequent module like head | |
return num_layers - 1, num_layers | |
param_name = param_name[len(prefix):] | |
if param_name.startswith('patch_embed'): | |
layer_depth = 0 | |
elif param_name.startswith('stages'): | |
stage_id = int(param_name.split('.')[1]) | |
block_id = param_name.split('.')[3] | |
if block_id in ('reduction', 'norm'): | |
layer_depth = sum(self.depths[:stage_id + 1]) | |
else: | |
layer_depth = sum(self.depths[:stage_id]) + int(block_id) + 1 | |
else: | |
layer_depth = num_layers - 1 | |
return layer_depth, num_layers | |