liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence
import torch
import torch.nn as nn
from mmcv.cnn.bricks import DropPath, build_norm_layer
from mmengine.model import BaseModule
from mmpretrain.registry import MODELS
from .base_backbone import BaseBackbone
from .poolformer import Mlp, PatchEmbed
class Affine(nn.Module):
"""Affine Transformation module.
Args:
in_features (int): Input dimension.
"""
def __init__(self, in_features):
super().__init__()
self.affine = nn.Conv2d(
in_features,
in_features,
kernel_size=1,
stride=1,
padding=0,
groups=in_features,
bias=True)
def forward(self, x):
return self.affine(x) - x
class RIFormerBlock(BaseModule):
"""RIFormer Block.
Args:
dim (int): Embedding dim.
mlp_ratio (float): Mlp expansion ratio. Defaults to 4.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='GN', num_groups=1)``.
act_cfg (dict): The config dict for activation between pointwise
convolution. Defaults to ``dict(type='GELU')``.
drop (float): Dropout rate. Defaults to 0.
drop_path (float): Stochastic depth rate. Defaults to 0.
layer_scale_init_value (float): Init value for Layer Scale.
Defaults to 1e-5.
deploy (bool): Whether to switch the model structure to
deployment mode. Default: False.
"""
def __init__(self,
dim,
mlp_ratio=4.,
norm_cfg=dict(type='GN', num_groups=1),
act_cfg=dict(type='GELU'),
drop=0.,
drop_path=0.,
layer_scale_init_value=1e-5,
deploy=False):
super().__init__()
if deploy:
self.norm_reparam = build_norm_layer(norm_cfg, dim)[1]
else:
self.norm1 = build_norm_layer(norm_cfg, dim)[1]
self.token_mixer = Affine(in_features=dim)
self.norm2 = build_norm_layer(norm_cfg, dim)[1]
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_cfg=act_cfg,
drop=drop)
# The following two techniques are useful to train deep RIFormers.
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.norm_cfg = norm_cfg
self.dim = dim
self.deploy = deploy
def forward(self, x):
if hasattr(self, 'norm_reparam'):
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
self.norm_reparam(x))
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) *
self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
self.token_mixer(self.norm1(x)))
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) *
self.mlp(self.norm2(x)))
return x
def fuse_affine(self, norm, token_mixer):
gamma_affn = token_mixer.affine.weight.reshape(-1)
gamma_affn = gamma_affn - torch.ones_like(gamma_affn)
beta_affn = token_mixer.affine.bias
gamma_ln = norm.weight
beta_ln = norm.bias
return (gamma_ln * gamma_affn), (beta_ln * gamma_affn + beta_affn)
def get_equivalent_scale_bias(self):
eq_s, eq_b = self.fuse_affine(self.norm1, self.token_mixer)
return eq_s, eq_b
def switch_to_deploy(self):
if self.deploy:
return
eq_s, eq_b = self.get_equivalent_scale_bias()
self.norm_reparam = build_norm_layer(self.norm_cfg, self.dim)[1]
self.norm_reparam.weight.data = eq_s
self.norm_reparam.bias.data = eq_b
self.__delattr__('norm1')
if hasattr(self, 'token_mixer'):
self.__delattr__('token_mixer')
self.deploy = True
def basic_blocks(dim,
index,
layers,
mlp_ratio=4.,
norm_cfg=dict(type='GN', num_groups=1),
act_cfg=dict(type='GELU'),
drop_rate=.0,
drop_path_rate=0.,
layer_scale_init_value=1e-5,
deploy=False):
"""generate RIFormer blocks for a stage."""
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (
sum(layers) - 1)
blocks.append(
RIFormerBlock(
dim,
mlp_ratio=mlp_ratio,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
drop=drop_rate,
drop_path=block_dpr,
layer_scale_init_value=layer_scale_init_value,
deploy=deploy,
))
blocks = nn.Sequential(*blocks)
return blocks
@MODELS.register_module()
class RIFormer(BaseBackbone):
"""RIFormer.
A PyTorch implementation of RIFormer introduced by:
`RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer <https://arxiv.org/abs/xxxx.xxxxx>`_
Args:
arch (str | dict): The model's architecture. If string, it should be
one of architecture in ``RIFormer.arch_settings``. And if dict, it
should include the following two keys:
- layers (list[int]): Number of blocks at each stage.
- embed_dims (list[int]): The number of channels at each stage.
- mlp_ratios (list[int]): Expansion ratio of MLPs.
- layer_scale_init_value (float): Init value for Layer Scale.
Defaults to 'S12'.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='LN2d', eps=1e-6)``.
act_cfg (dict): The config dict for activation between pointwise
convolution. Defaults to ``dict(type='GELU')``.
in_patch_size (int): The patch size of/? input image patch embedding.
Defaults to 7.
in_stride (int): The stride of input image patch embedding.
Defaults to 4.
in_pad (int): The padding of input image patch embedding.
Defaults to 2.
down_patch_size (int): The patch size of downsampling patch embedding.
Defaults to 3.
down_stride (int): The stride of downsampling patch embedding.
Defaults to 2.
down_pad (int): The padding of downsampling patch embedding.
Defaults to 1.
drop_rate (float): Dropout rate. Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
out_indices (Sequence | int): Output from which network position.
Index 0-6 respectively corresponds to
[stage1, downsampling, stage2, downsampling, stage3, downsampling, stage4]
Defaults to -1, means the last stage.
frozen_stages (int): Stages to be frozen (all param fixed).
Defaults to -1, which means not freezing any parameters.
deploy (bool): Whether to switch the model structure to
deployment mode. Default: False.
init_cfg (dict, optional): Initialization config dict
""" # noqa: E501
# --layers: [x,x,x,x], numbers of layers for the four stages
# --embed_dims, --mlp_ratios:
# embedding dims and mlp ratios for the four stages
# --downsamples: flags to apply downsampling or not in four blocks
arch_settings = {
's12': {
'layers': [2, 2, 6, 2],
'embed_dims': [64, 128, 320, 512],
'mlp_ratios': [4, 4, 4, 4],
'layer_scale_init_value': 1e-5,
},
's24': {
'layers': [4, 4, 12, 4],
'embed_dims': [64, 128, 320, 512],
'mlp_ratios': [4, 4, 4, 4],
'layer_scale_init_value': 1e-5,
},
's36': {
'layers': [6, 6, 18, 6],
'embed_dims': [64, 128, 320, 512],
'mlp_ratios': [4, 4, 4, 4],
'layer_scale_init_value': 1e-6,
},
'm36': {
'layers': [6, 6, 18, 6],
'embed_dims': [96, 192, 384, 768],
'mlp_ratios': [4, 4, 4, 4],
'layer_scale_init_value': 1e-6,
},
'm48': {
'layers': [8, 8, 24, 8],
'embed_dims': [96, 192, 384, 768],
'mlp_ratios': [4, 4, 4, 4],
'layer_scale_init_value': 1e-6,
},
}
def __init__(self,
arch='s12',
in_channels=3,
norm_cfg=dict(type='GN', num_groups=1),
act_cfg=dict(type='GELU'),
in_patch_size=7,
in_stride=4,
in_pad=2,
down_patch_size=3,
down_stride=2,
down_pad=1,
drop_rate=0.,
drop_path_rate=0.,
out_indices=-1,
frozen_stages=-1,
init_cfg=None,
deploy=False):
super().__init__(init_cfg=init_cfg)
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'Unavailable arch, please choose from ' \
f'({set(self.arch_settings)}) or pass a dict.'
arch = self.arch_settings[arch]
elif isinstance(arch, dict):
assert 'layers' in arch and 'embed_dims' in arch, \
f'The arch dict must have "layers" and "embed_dims", ' \
f'but got {list(arch.keys())}.'
layers = arch['layers']
embed_dims = arch['embed_dims']
mlp_ratios = arch['mlp_ratios'] \
if 'mlp_ratios' in arch else [4, 4, 4, 4]
layer_scale_init_value = arch['layer_scale_init_value'] \
if 'layer_scale_init_value' in arch else 1e-5
self.patch_embed = PatchEmbed(
patch_size=in_patch_size,
stride=in_stride,
padding=in_pad,
in_chans=in_channels,
embed_dim=embed_dims[0])
# set the main block in network
network = []
for i in range(len(layers)):
stage = basic_blocks(
embed_dims[i],
i,
layers,
mlp_ratio=mlp_ratios[i],
norm_cfg=norm_cfg,
act_cfg=act_cfg,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
layer_scale_init_value=layer_scale_init_value,
deploy=deploy)
network.append(stage)
if i >= len(layers) - 1:
break
if embed_dims[i] != embed_dims[i + 1]:
# downsampling between two stages
network.append(
PatchEmbed(
patch_size=down_patch_size,
stride=down_stride,
padding=down_pad,
in_chans=embed_dims[i],
embed_dim=embed_dims[i + 1]))
self.network = nn.ModuleList(network)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = 7 + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
if self.out_indices:
for i_layer in self.out_indices:
layer = build_norm_layer(norm_cfg,
embed_dims[(i_layer + 1) // 2])[1]
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self.frozen_stages = frozen_stages
self._freeze_stages()
self.deploy = deploy
def forward_embeddings(self, x):
x = self.patch_embed(x)
return x
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
x = block(x)
if idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
x_out = norm_layer(x)
outs.append(x_out)
return tuple(outs)
def forward(self, x):
# input embedding
x = self.forward_embeddings(x)
# through backbone
x = self.forward_tokens(x)
return x
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
for i in range(0, self.frozen_stages + 1):
# Include both block and downsample layer.
module = self.network[i]
module.eval()
for param in module.parameters():
param.requires_grad = False
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
norm_layer.eval()
for param in norm_layer.parameters():
param.requires_grad = False
def train(self, mode=True):
super(RIFormer, self).train(mode)
self._freeze_stages()
return self
def switch_to_deploy(self):
for m in self.modules():
if isinstance(m, RIFormerBlock):
m.switch_to_deploy()
self.deploy = True