Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn.bricks import ConvModule, DropPath | |
from mmengine.model import Sequential | |
from torch import Tensor | |
from mmpretrain.registry import MODELS | |
from ..utils import InvertedResidual as MBConv | |
from .base_backbone import BaseBackbone | |
from .efficientnet import EdgeResidual as FusedMBConv | |
class EnhancedConvModule(ConvModule): | |
"""ConvModule with short-cut and droppath. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
Same as that in ``nn._ConvNd``. | |
out_channels (int): Number of channels produced by the convolution. | |
Same as that in ``nn._ConvNd``. | |
kernel_size (int | tuple[int]): Size of the convolving kernel. | |
Same as that in ``nn._ConvNd``. | |
stride (int | tuple[int]): Stride of the convolution. | |
Same as that in ``nn._ConvNd``. | |
has_skip (bool): Whether there is short-cut. Defaults to False. | |
drop_path_rate (float): Stochastic depth rate. Default 0.0. | |
padding (int | tuple[int]): Zero-padding added to both sides of | |
the input. Same as that in ``nn._ConvNd``. | |
dilation (int | tuple[int]): Spacing between kernel elements. | |
Same as that in ``nn._ConvNd``. | |
groups (int): Number of blocked connections from input channels to | |
output channels. Same as that in ``nn._ConvNd``. | |
bias (bool | str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise | |
False. Default: "auto". | |
conv_cfg (dict): Config dict for convolution layer. Default: None, | |
which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU'). | |
inplace (bool): Whether to use inplace mode for activation. | |
Default: True. | |
with_spectral_norm (bool): Whether use spectral norm in conv module. | |
Default: False. | |
padding_mode (str): If the `padding_mode` has not been supported by | |
current `Conv2d` in PyTorch, we will use our own padding layer | |
instead. Currently, we support ['zeros', 'circular'] with official | |
implementation and ['reflect'] with our own implementation. | |
Default: 'zeros'. | |
order (tuple[str]): The order of conv/norm/activation layers. It is a | |
sequence of "conv", "norm" and "act". Common examples are | |
("conv", "norm", "act") and ("act", "conv", "norm"). | |
Default: ('conv', 'norm', 'act'). | |
""" | |
def __init__(self, *args, has_skip=False, drop_path_rate=0, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.has_skip = has_skip | |
if self.has_skip and (self.in_channels != self.out_channels | |
or self.stride != (1, 1)): | |
raise ValueError('the stride must be 1 and the `in_channels` and' | |
' `out_channels` must be the same , when ' | |
'`has_skip` is True in `EnhancedConvModule` .') | |
self.drop_path = DropPath( | |
drop_path_rate) if drop_path_rate else nn.Identity() | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
short_cut = x | |
x = super().forward(x, **kwargs) | |
if self.has_skip: | |
x = self.drop_path(x) + short_cut | |
return x | |
class EfficientNetV2(BaseBackbone): | |
"""EfficientNetV2 backbone. | |
A PyTorch implementation of EfficientNetV2 introduced by: | |
`EfficientNetV2: Smaller Models and Faster Training | |
<https://arxiv.org/abs/2104.00298>`_ | |
Args: | |
arch (str): Architecture of efficientnetv2. Defaults to s. | |
in_channels (int): Number of input image channels. Defaults to 3. | |
drop_path_rate (float): The ratio of the stochastic depth. | |
Defaults to 0.0. | |
out_indices (Sequence[int]): Output from which stages. | |
Defaults to (-1, ). | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Defaults to 0, which means not freezing any parameters. | |
conv_cfg (dict): Config dict for convolution layer. | |
Defaults to None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Defaults to dict(type='Swish'). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Defaults to False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Defaults to False. | |
""" | |
# Parameters to build layers. From left to right: | |
# - repeat (int): The repeat number of the block in the layer | |
# - kernel_size (int): The kernel size of the layer | |
# - stride (int): The stride of the first block of the layer | |
# - expand_ratio (int, float): The expand_ratio of the mid_channels | |
# - in_channel (int): The number of in_channels of the layer | |
# - out_channel (int): The number of out_channels of the layer | |
# - se_ratio (float): The sequeeze ratio of SELayer. | |
# - block_type (int): -2: ConvModule, -1: EnhancedConvModule, | |
# 0: FusedMBConv, 1: MBConv | |
arch_settings = { | |
**dict.fromkeys(['small', 's'], [[2, 3, 1, 1, 24, 24, 0.0, -1], | |
[4, 3, 2, 4, 24, 48, 0.0, 0], | |
[4, 3, 2, 4, 48, 64, 0.0, 0], | |
[6, 3, 2, 4, 64, 128, 0.25, 1], | |
[9, 3, 1, 6, 128, 160, 0.25, 1], | |
[15, 3, 2, 6, 160, 256, 0.25, 1], | |
[1, 1, 1, 1, 256, 1280, 0.0, -2]]), | |
**dict.fromkeys(['m', 'medium'], [[3, 3, 1, 1, 24, 24, 0.0, -1], | |
[5, 3, 2, 4, 24, 48, 0.0, 0], | |
[5, 3, 2, 4, 48, 80, 0.0, 0], | |
[7, 3, 2, 4, 80, 160, 0.25, 1], | |
[14, 3, 1, 6, 160, 176, 0.25, 1], | |
[18, 3, 2, 6, 176, 304, 0.25, 1], | |
[5, 3, 1, 6, 304, 512, 0.25, 1], | |
[1, 1, 1, 1, 512, 1280, 0.0, -2]]), | |
**dict.fromkeys(['l', 'large'], [[4, 3, 1, 1, 32, 32, 0.0, -1], | |
[7, 3, 2, 4, 32, 64, 0.0, 0], | |
[7, 3, 2, 4, 64, 96, 0.0, 0], | |
[10, 3, 2, 4, 96, 192, 0.25, 1], | |
[19, 3, 1, 6, 192, 224, 0.25, 1], | |
[25, 3, 2, 6, 224, 384, 0.25, 1], | |
[7, 3, 1, 6, 384, 640, 0.25, 1], | |
[1, 1, 1, 1, 640, 1280, 0.0, -2]]), | |
**dict.fromkeys(['xl'], [[4, 3, 1, 1, 32, 32, 0.0, -1], | |
[8, 3, 2, 4, 32, 64, 0.0, 0], | |
[8, 3, 2, 4, 64, 96, 0.0, 0], | |
[16, 3, 2, 4, 96, 192, 0.25, 1], | |
[24, 3, 1, 6, 192, 256, 0.25, 1], | |
[32, 3, 2, 6, 256, 512, 0.25, 1], | |
[8, 3, 1, 6, 512, 640, 0.25, 1], | |
[1, 1, 1, 1, 640, 1280, 0.0, -2]]), | |
**dict.fromkeys(['b0'], [[1, 3, 1, 1, 32, 16, 0.0, -1], | |
[2, 3, 2, 4, 16, 32, 0.0, 0], | |
[2, 3, 2, 4, 32, 48, 0.0, 0], | |
[3, 3, 2, 4, 48, 96, 0.25, 1], | |
[5, 3, 1, 6, 96, 112, 0.25, 1], | |
[8, 3, 2, 6, 112, 192, 0.25, 1], | |
[1, 1, 1, 1, 192, 1280, 0.0, -2]]), | |
**dict.fromkeys(['b1'], [[2, 3, 1, 1, 32, 16, 0.0, -1], | |
[3, 3, 2, 4, 16, 32, 0.0, 0], | |
[3, 3, 2, 4, 32, 48, 0.0, 0], | |
[4, 3, 2, 4, 48, 96, 0.25, 1], | |
[6, 3, 1, 6, 96, 112, 0.25, 1], | |
[9, 3, 2, 6, 112, 192, 0.25, 1], | |
[1, 1, 1, 1, 192, 1280, 0.0, -2]]), | |
**dict.fromkeys(['b2'], [[2, 3, 1, 1, 32, 16, 0.0, -1], | |
[3, 3, 2, 4, 16, 32, 0.0, 0], | |
[3, 3, 2, 4, 32, 56, 0.0, 0], | |
[4, 3, 2, 4, 56, 104, 0.25, 1], | |
[6, 3, 1, 6, 104, 120, 0.25, 1], | |
[10, 3, 2, 6, 120, 208, 0.25, 1], | |
[1, 1, 1, 1, 208, 1408, 0.0, -2]]), | |
**dict.fromkeys(['b3'], [[2, 3, 1, 1, 40, 16, 0.0, -1], | |
[3, 3, 2, 4, 16, 40, 0.0, 0], | |
[3, 3, 2, 4, 40, 56, 0.0, 0], | |
[5, 3, 2, 4, 56, 112, 0.25, 1], | |
[7, 3, 1, 6, 112, 136, 0.25, 1], | |
[12, 3, 2, 6, 136, 232, 0.25, 1], | |
[1, 1, 1, 1, 232, 1536, 0.0, -2]]) | |
} | |
def __init__(self, | |
arch: str = 's', | |
in_channels: int = 3, | |
drop_path_rate: float = 0., | |
out_indices: Sequence[int] = (-1, ), | |
frozen_stages: int = 0, | |
conv_cfg=dict(type='Conv2dAdaptivePadding'), | |
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.1), | |
act_cfg=dict(type='Swish'), | |
norm_eval: bool = False, | |
with_cp: bool = False, | |
init_cfg=[ | |
dict(type='Kaiming', layer='Conv2d'), | |
dict( | |
type='Constant', | |
layer=['_BatchNorm', 'GroupNorm'], | |
val=1) | |
]): | |
super(EfficientNetV2, self).__init__(init_cfg) | |
assert arch in self.arch_settings, \ | |
f'"{arch}" is not one of the arch_settings ' \ | |
f'({", ".join(self.arch_settings.keys())})' | |
self.arch = self.arch_settings[arch] | |
if frozen_stages not in range(len(self.arch) + 1): | |
raise ValueError('frozen_stages must be in range(0, ' | |
f'{len(self.arch)}), but get {frozen_stages}') | |
self.drop_path_rate = drop_path_rate | |
self.frozen_stages = frozen_stages | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
self.layers = nn.ModuleList() | |
assert self.arch[-1][-1] == -2, \ | |
f'the last block_type of `arch_setting` must be -2 ,' \ | |
f'but get `{self.arch[-1][-1]}`' | |
self.in_channels = in_channels | |
self.out_channels = self.arch[-1][5] | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.make_layers() | |
# there len(slef.arch) + 2 layers in the backbone | |
# including: the first + len(self.arch) layers + the last | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must by a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
out_indices = list(out_indices) | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = len(self.layers) + index | |
assert 0 <= out_indices[i] <= len(self.layers), \ | |
f'Invalid out_indices {index}.' | |
self.out_indices = out_indices | |
def make_layers(self, ): | |
# make the first layer | |
self.layers.append( | |
ConvModule( | |
in_channels=self.in_channels, | |
out_channels=self.arch[0][4], | |
kernel_size=3, | |
stride=2, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
in_channels = self.arch[0][4] | |
layer_setting = self.arch[:-1] | |
total_num_blocks = sum([x[0] for x in layer_setting]) | |
block_idx = 0 | |
dpr = [ | |
x.item() | |
for x in torch.linspace(0, self.drop_path_rate, total_num_blocks) | |
] # stochastic depth decay rule | |
for layer_cfg in layer_setting: | |
layer = [] | |
(repeat, kernel_size, stride, expand_ratio, _, out_channels, | |
se_ratio, block_type) = layer_cfg | |
for i in range(repeat): | |
stride = stride if i == 0 else 1 | |
if block_type == -1: | |
has_skip = stride == 1 and in_channels == out_channels | |
droppath_rate = dpr[block_idx] if has_skip else 0.0 | |
layer.append( | |
EnhancedConvModule( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
has_skip=has_skip, | |
drop_path_rate=droppath_rate, | |
stride=stride, | |
padding=1, | |
conv_cfg=None, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
in_channels = out_channels | |
else: | |
mid_channels = int(in_channels * expand_ratio) | |
se_cfg = None | |
if block_type != 0 and se_ratio > 0: | |
se_cfg = dict( | |
channels=mid_channels, | |
ratio=expand_ratio * (1.0 / se_ratio), | |
divisor=1, | |
act_cfg=(self.act_cfg, dict(type='Sigmoid'))) | |
block = FusedMBConv if block_type == 0 else MBConv | |
conv_cfg = self.conv_cfg if stride == 2 else None | |
layer.append( | |
block( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
mid_channels=mid_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
se_cfg=se_cfg, | |
conv_cfg=conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
drop_path_rate=dpr[block_idx], | |
with_cp=self.with_cp)) | |
in_channels = out_channels | |
block_idx += 1 | |
self.layers.append(Sequential(*layer)) | |
# make the last layer | |
self.layers.append( | |
ConvModule( | |
in_channels=in_channels, | |
out_channels=self.out_channels, | |
kernel_size=self.arch[-1][1], | |
stride=self.arch[-1][2], | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
def forward(self, x: Tensor) -> Tuple[Tensor]: | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |
def _freeze_stages(self): | |
for i in range(self.frozen_stages): | |
m = self.layers[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(EfficientNetV2, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |