HumanSD / diffusers /pipelines /shap_e /pipeline_shap_e.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
raw
history blame
14.4 kB
# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> repo = "openai/shap-e"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 15.0
>>> prompt = "a shark"
>>> images = pipe(
... prompt,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], "shark_3d.gif")
```
"""
@dataclass
class ShapEPipelineOutput(BaseOutput):
"""
Output class for ShapEPipeline.
Args:
images (`torch.FloatTensor`)
a list of images for 3D rendering
"""
images: Union[List[List[PIL.Image.Image]], List[List[np.ndarray]]]
class ShapEPipeline(DiffusionPipeline):
"""
Pipeline for generating latent representation of a 3D asset and rendering with NeRF method with Shap-E
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
scheduler ([`HeunDiscreteScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
renderer ([`ShapERenderer`]):
Shap-E renderer projects the generated latents into parameters of a MLP that's used to create 3D objects
with the NeRF rendering method
"""
def __init__(
self,
prior: PriorTransformer,
text_encoder: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
scheduler: HeunDiscreteScheduler,
renderer: ShapERenderer,
):
super().__init__()
self.register_modules(
prior=prior,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
renderer=renderer,
)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
hook = None
for cpu_offloaded_model in [self.text_encoder, self.prior, self.renderer]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
):
len(prompt) if isinstance(prompt, list) else 1
# YiYi Notes: set pad_token_id to be 0, not sure why I can't set in the config file
self.tokenizer.pad_token_id = 0
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_encoder_output = self.text_encoder(text_input_ids.to(device))
prompt_embeds = text_encoder_output.text_embeds
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
# in Shap-E it normalize the prompt_embeds and then later rescale it
prompt_embeds = prompt_embeds / torch.linalg.norm(prompt_embeds, dim=-1, keepdim=True)
if do_classifier_free_guidance:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# Rescale the features to have unit variance
prompt_embeds = math.sqrt(prompt_embeds.shape[1]) * prompt_embeds
return prompt_embeds
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: str,
num_images_per_prompt: int = 1,
num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
guidance_scale: float = 4.0,
frame_size: int = 64,
output_type: Optional[str] = "pil", # pil, np, latent
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
frame_size (`int`, *optional*, default to 64):
the width and height of each image frame of the generated 3d output
output_type (`str`, *optional*, defaults to `"pt"`):
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
(`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`ShapEPipelineOutput`] or `tuple`
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
device = self._execution_device
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance)
# prior
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_embeddings = self.prior.config.num_embeddings
embedding_dim = self.prior.config.embedding_dim
latents = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim),
prompt_embeds.dtype,
device,
generator,
latents,
self.scheduler,
)
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim)
for i, t in enumerate(self.progress_bar(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.prior(
scaled_model_input,
timestep=t,
proj_embedding=prompt_embeds,
).predicted_image_embedding
# remove the variance
noise_pred, _ = noise_pred.split(
scaled_model_input.shape[2], dim=2
) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
noise_pred_uncond, noise_pred = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
latents = self.scheduler.step(
noise_pred,
timestep=t,
sample=latents,
).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=latents)
images = []
for i, latent in enumerate(latents):
image = self.renderer.decode(
latent[None, :],
device,
size=frame_size,
ray_batch_size=4096,
n_coarse_samples=64,
n_fine_samples=128,
)
images.append(image)
images = torch.stack(images)
if output_type not in ["np", "pil"]:
raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}")
images = images.cpu().numpy()
if output_type == "pil":
images = [self.numpy_to_pil(image) for image in images]
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=images)