Spaces:
Runtime error
Runtime error
| # Copyright 2023 Open AI and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| from transformers import CLIPTextModelWithProjection, CLIPTokenizer | |
| from ...models import PriorTransformer | |
| from ...pipelines import DiffusionPipeline | |
| from ...schedulers import HeunDiscreteScheduler | |
| from ...utils import ( | |
| BaseOutput, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| logging, | |
| randn_tensor, | |
| replace_example_docstring, | |
| ) | |
| from .renderer import ShapERenderer | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import DiffusionPipeline | |
| >>> from diffusers.utils import export_to_gif | |
| >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| >>> repo = "openai/shap-e" | |
| >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) | |
| >>> pipe = pipe.to(device) | |
| >>> guidance_scale = 15.0 | |
| >>> prompt = "a shark" | |
| >>> images = pipe( | |
| ... prompt, | |
| ... guidance_scale=guidance_scale, | |
| ... num_inference_steps=64, | |
| ... frame_size=256, | |
| ... ).images | |
| >>> gif_path = export_to_gif(images[0], "shark_3d.gif") | |
| ``` | |
| """ | |
| class ShapEPipelineOutput(BaseOutput): | |
| """ | |
| Output class for ShapEPipeline. | |
| Args: | |
| images (`torch.FloatTensor`) | |
| a list of images for 3D rendering | |
| """ | |
| images: Union[List[List[PIL.Image.Image]], List[List[np.ndarray]]] | |
| class ShapEPipeline(DiffusionPipeline): | |
| """ | |
| Pipeline for generating latent representation of a 3D asset and rendering with NeRF method with Shap-E | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| prior ([`PriorTransformer`]): | |
| The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
| text_encoder ([`CLIPTextModelWithProjection`]): | |
| Frozen text-encoder. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| scheduler ([`HeunDiscreteScheduler`]): | |
| A scheduler to be used in combination with `prior` to generate image embedding. | |
| renderer ([`ShapERenderer`]): | |
| Shap-E renderer projects the generated latents into parameters of a MLP that's used to create 3D objects | |
| with the NeRF rendering method | |
| """ | |
| def __init__( | |
| self, | |
| prior: PriorTransformer, | |
| text_encoder: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| scheduler: HeunDiscreteScheduler, | |
| renderer: ShapERenderer, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| prior=prior, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| scheduler=scheduler, | |
| renderer=renderer, | |
| ) | |
| # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
| def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| latents = latents * scheduler.init_noise_sigma | |
| return latents | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.text_encoder, self.prior, self.renderer]: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| if self.safety_checker is not None: | |
| _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| ): | |
| len(prompt) if isinstance(prompt, list) else 1 | |
| # YiYi Notes: set pad_token_id to be 0, not sure why I can't set in the config file | |
| self.tokenizer.pad_token_id = 0 | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_encoder_output = self.text_encoder(text_input_ids.to(device)) | |
| prompt_embeds = text_encoder_output.text_embeds | |
| prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| # in Shap-E it normalize the prompt_embeds and then later rescale it | |
| prompt_embeds = prompt_embeds / torch.linalg.norm(prompt_embeds, dim=-1, keepdim=True) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| # Rescale the features to have unit variance | |
| prompt_embeds = math.sqrt(prompt_embeds.shape[1]) * prompt_embeds | |
| return prompt_embeds | |
| def __call__( | |
| self, | |
| prompt: str, | |
| num_images_per_prompt: int = 1, | |
| num_inference_steps: int = 25, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| guidance_scale: float = 4.0, | |
| frame_size: int = 64, | |
| output_type: Optional[str] = "pil", # pil, np, latent | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| num_inference_steps (`int`, *optional*, defaults to 25): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| guidance_scale (`float`, *optional*, defaults to 4.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| frame_size (`int`, *optional*, default to 64): | |
| the width and height of each image frame of the generated 3d output | |
| output_type (`str`, *optional*, defaults to `"pt"`): | |
| The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"` | |
| (`torch.Tensor`). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| Examples: | |
| Returns: | |
| [`ShapEPipelineOutput`] or `tuple` | |
| """ | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| elif isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| device = self._execution_device | |
| batch_size = batch_size * num_images_per_prompt | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) | |
| # prior | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_embeddings = self.prior.config.num_embeddings | |
| embedding_dim = self.prior.config.embedding_dim | |
| latents = self.prepare_latents( | |
| (batch_size, num_embeddings * embedding_dim), | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| self.scheduler, | |
| ) | |
| # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim | |
| latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim) | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| noise_pred = self.prior( | |
| scaled_model_input, | |
| timestep=t, | |
| proj_embedding=prompt_embeds, | |
| ).predicted_image_embedding | |
| # remove the variance | |
| noise_pred, _ = noise_pred.split( | |
| scaled_model_input.shape[2], dim=2 | |
| ) # batch_size, num_embeddings, embedding_dim | |
| if do_classifier_free_guidance is not None: | |
| noise_pred_uncond, noise_pred = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| timestep=t, | |
| sample=latents, | |
| ).prev_sample | |
| if output_type == "latent": | |
| return ShapEPipelineOutput(images=latents) | |
| images = [] | |
| for i, latent in enumerate(latents): | |
| image = self.renderer.decode( | |
| latent[None, :], | |
| device, | |
| size=frame_size, | |
| ray_batch_size=4096, | |
| n_coarse_samples=64, | |
| n_fine_samples=128, | |
| ) | |
| images.append(image) | |
| images = torch.stack(images) | |
| if output_type not in ["np", "pil"]: | |
| raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}") | |
| images = images.cpu().numpy() | |
| if output_type == "pil": | |
| images = [self.numpy_to_pil(image) for image in images] | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (images,) | |
| return ShapEPipelineOutput(images=images) | |