Spaces:
Runtime error
Runtime error
# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import PIL | |
import torch | |
from ...models import UNet2DModel | |
from ...schedulers import RePaintScheduler | |
from ...utils import PIL_INTERPOLATION, logging, randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess | |
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]): | |
warnings.warn( | |
"The preprocess method is deprecated and will be removed in a future version. Please" | |
" use VaeImageProcessor.preprocess instead", | |
FutureWarning, | |
) | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
w, h = image[0].size | |
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]): | |
if isinstance(mask, torch.Tensor): | |
return mask | |
elif isinstance(mask, PIL.Image.Image): | |
mask = [mask] | |
if isinstance(mask[0], PIL.Image.Image): | |
w, h = mask[0].size | |
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask] | |
mask = np.concatenate(mask, axis=0) | |
mask = mask.astype(np.float32) / 255.0 | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask) | |
elif isinstance(mask[0], torch.Tensor): | |
mask = torch.cat(mask, dim=0) | |
return mask | |
class RePaintPipeline(DiffusionPipeline): | |
unet: UNet2DModel | |
scheduler: RePaintScheduler | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
image: Union[torch.Tensor, PIL.Image.Image], | |
mask_image: Union[torch.Tensor, PIL.Image.Image], | |
num_inference_steps: int = 250, | |
eta: float = 0.0, | |
jump_length: int = 10, | |
jump_n_sample: int = 10, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
r""" | |
Args: | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
The original image to inpaint on. | |
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
The mask_image where 0.0 values define which part of the original image to inpaint (change). | |
num_inference_steps (`int`, *optional*, defaults to 1000): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
eta (`float`): | |
The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 - 0.0 is DDIM | |
and 1.0 is DDPM scheduler respectively. | |
jump_length (`int`, *optional*, defaults to 10): | |
The number of steps taken forward in time before going backward in time for a single jump ("j" in | |
RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. | |
jump_n_sample (`int`, *optional*, defaults to 10): | |
The number of times we will make forward time jump for a given chosen time sample. Take a look at | |
Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. | |
generator (`torch.Generator`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is | |
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. | |
""" | |
original_image = image | |
original_image = _preprocess_image(original_image) | |
original_image = original_image.to(device=self._execution_device, dtype=self.unet.dtype) | |
mask_image = _preprocess_mask(mask_image) | |
mask_image = mask_image.to(device=self._execution_device, dtype=self.unet.dtype) | |
batch_size = original_image.shape[0] | |
# sample gaussian noise to begin the loop | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
image_shape = original_image.shape | |
image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) | |
# set step values | |
self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self._execution_device) | |
self.scheduler.eta = eta | |
t_last = self.scheduler.timesteps[0] + 1 | |
generator = generator[0] if isinstance(generator, list) else generator | |
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
if t < t_last: | |
# predict the noise residual | |
model_output = self.unet(image, t).sample | |
# compute previous image: x_t -> x_t-1 | |
image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample | |
else: | |
# compute the reverse: x_t-1 -> x_t | |
image = self.scheduler.undo_step(image, t_last, generator) | |
t_last = t | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |