Spaces:
Runtime error
Runtime error
import json | |
import logging | |
import math | |
import os | |
import time | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch.nn.parallel.distributed import DistributedDataParallel | |
try: | |
import wandb | |
except ImportError: | |
wandb = None | |
from open_clip import get_cast_dtype, CLIP, CustomTextCLIP | |
from .distributed import is_master | |
from .zero_shot import zero_shot_eval | |
from .precision import get_autocast | |
class AverageMeter(object): | |
"""Computes and stores the average and current value""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def postprocess_clip_output(model_out): | |
return { | |
"image_features": model_out[0], | |
"text_features": model_out[1], | |
"logit_scale": model_out[2] | |
} | |
def unwrap_model(model): | |
if hasattr(model, 'module'): | |
return model.module | |
else: | |
return model | |
def backward(total_loss, scaler): | |
if scaler is not None: | |
scaler.scale(total_loss).backward() | |
else: | |
total_loss.backward() | |
def train_one_epoch(model, data, loss, epoch, optimizer, scaler, scheduler, dist_model, args, tb_writer=None): | |
device = torch.device(args.device) | |
autocast = get_autocast(args.precision) | |
cast_dtype = get_cast_dtype(args.precision) | |
model.train() | |
if args.distill: | |
dist_model.eval() | |
data['train'].set_epoch(epoch) # set epoch in process safe manner via sampler or shared_epoch | |
dataloader = data['train'].dataloader | |
num_batches_per_epoch = dataloader.num_batches // args.accum_freq | |
sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10)) | |
if args.accum_freq > 1: | |
accum_images, accum_texts, accum_features = [], [], {} | |
losses_m = {} | |
batch_time_m = AverageMeter() | |
data_time_m = AverageMeter() | |
end = time.time() | |
for i, batch in enumerate(dataloader): | |
i_accum = i // args.accum_freq | |
step = num_batches_per_epoch * epoch + i_accum | |
if not args.skip_scheduler: | |
scheduler(step) | |
images, texts = batch | |
images = images.to(device=device, dtype=cast_dtype, non_blocking=True) | |
texts = texts.to(device=device, non_blocking=True) | |
data_time_m.update(time.time() - end) | |
optimizer.zero_grad() | |
if args.accum_freq == 1: | |
with autocast(): | |
model_out = model(images, texts) | |
logit_scale = model_out["logit_scale"] | |
if args.distill: | |
with torch.no_grad(): | |
dist_model_out = dist_model(images, texts) | |
model_out.update({f'dist_{k}' : v for k, v in dist_model_out.items()}) | |
losses = loss(**model_out, output_dict=True) | |
total_loss = sum(losses.values()) | |
losses["loss"] = total_loss | |
backward(total_loss, scaler) | |
else: | |
# First, cache the features without any gradient tracking. | |
with torch.no_grad(): | |
with autocast(): | |
model_out = model(images, texts) | |
model_out.pop("logit_scale") | |
for key, val in model_out.items(): | |
if key in accum_features: | |
accum_features[key].append(val) | |
else: | |
accum_features[key] = [val] | |
accum_images.append(images) | |
accum_texts.append(texts) | |
# If (i + 1) % accum_freq is not zero, move on to the next batch. | |
if ((i + 1) % args.accum_freq) > 0: | |
# FIXME this makes data time logging unreliable when accumulating | |
continue | |
# Now, ready to take gradients for the last accum_freq batches. | |
# Re-do the forward pass for those batches, and use the cached features from the other batches as negatives. | |
# Call backwards each time, but only step optimizer at the end. | |
optimizer.zero_grad() | |
for j in range(args.accum_freq): | |
images = accum_images[j] | |
texts = accum_texts[j] | |
with autocast(): | |
model_out = model(images, texts) | |
logit_scale = model_out.pop("logit_scale") | |
inputs = {} | |
for key, val in accum_features.items(): | |
accumulated = accum_features[key] | |
inputs[key] = torch.cat(accumulated[:j] + [model_out[key]] + accumulated[j + 1:]) | |
losses = loss(**inputs, logit_scale=logit_scale, output_dict=True) | |
del inputs | |
total_loss = sum(losses.values()) | |
losses["loss"] = total_loss | |
backward(total_loss, scaler) | |
if scaler is not None: | |
if args.horovod: | |
optimizer.synchronize() | |
scaler.unscale_(optimizer) | |
if args.grad_clip_norm is not None: | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0) | |
with optimizer.skip_synchronize(): | |
scaler.step(optimizer) | |
else: | |
if args.grad_clip_norm is not None: | |
scaler.unscale_(optimizer) | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0) | |
scaler.step(optimizer) | |
scaler.update() | |
else: | |
if args.grad_clip_norm is not None: | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0) | |
optimizer.step() | |
# reset gradient accum, if enabled | |
if args.accum_freq > 1: | |
accum_images, accum_texts, accum_features = [], [], {} | |
# Note: we clamp to 4.6052 = ln(100), as in the original paper. | |
with torch.no_grad(): | |
unwrap_model(model).logit_scale.clamp_(0, math.log(100)) | |
batch_time_m.update(time.time() - end) | |
end = time.time() | |
batch_count = i_accum + 1 | |
if is_master(args) and (i_accum % args.log_every_n_steps == 0 or batch_count == num_batches_per_epoch): | |
batch_size = len(images) | |
num_samples = batch_count * batch_size * args.accum_freq * args.world_size | |
samples_per_epoch = dataloader.num_samples | |
percent_complete = 100.0 * batch_count / num_batches_per_epoch | |
# NOTE loss is coarsely sampled, just master node and per log update | |
for key, val in losses.items(): | |
if key not in losses_m: | |
losses_m[key] = AverageMeter() | |
losses_m[key].update(val.item(), batch_size) | |
logit_scale_scalar = logit_scale.item() | |
loss_log = " ".join( | |
[ | |
f"{loss_name.capitalize()}: {loss_m.val:#.5g} ({loss_m.avg:#.5g})" | |
for loss_name, loss_m in losses_m.items() | |
] | |
) | |
samples_per_second = args.accum_freq * args.batch_size * args.world_size / batch_time_m.val | |
samples_per_second_per_gpu = args.accum_freq * args.batch_size / batch_time_m.val | |
logging.info( | |
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " | |
f"Data (t): {data_time_m.avg:.3f} " | |
f"Batch (t): {batch_time_m.avg:.3f}, {samples_per_second:#g}/s, {samples_per_second_per_gpu:#g}/s/gpu " | |
f"LR: {optimizer.param_groups[0]['lr']:5f} " | |
f"Logit Scale: {logit_scale_scalar:.3f} " + loss_log | |
) | |
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing | |
log_data = { | |
"data_time": data_time_m.val, | |
"batch_time": batch_time_m.val, | |
"samples_per_second": samples_per_second, | |
"samples_per_second_per_gpu": samples_per_second_per_gpu, | |
"scale": logit_scale_scalar, | |
"lr": optimizer.param_groups[0]["lr"] | |
} | |
log_data.update({name:val.val for name,val in losses_m.items()}) | |
for name, val in log_data.items(): | |
name = "train/" + name | |
if tb_writer is not None: | |
tb_writer.add_scalar(name, val, step) | |
if args.wandb: | |
assert wandb is not None, 'Please install wandb.' | |
wandb.log({name: val, 'step': step}) | |
# resetting batch / data time meters per log window | |
batch_time_m.reset() | |
data_time_m.reset() | |
# end for | |
def evaluate(model, data, epoch, args, tb_writer=None): | |
metrics = {} | |
if not is_master(args): | |
return metrics | |
device = torch.device(args.device) | |
model.eval() | |
zero_shot_metrics = zero_shot_eval(model, data, epoch, args) | |
metrics.update(zero_shot_metrics) | |
autocast = get_autocast(args.precision) | |
cast_dtype = get_cast_dtype(args.precision) | |
if 'val' in data and (args.val_frequency and ((epoch % args.val_frequency) == 0 or epoch == args.epochs)): | |
dataloader = data['val'].dataloader | |
num_samples = 0 | |
samples_per_val = dataloader.num_samples | |
# FIXME this does not scale past small eval datasets | |
# all_image_features @ all_text_features will blow up memory and compute very quickly | |
cumulative_loss = 0.0 | |
cumulative_gen_loss = 0.0 | |
all_image_features, all_text_features = [], [] | |
with torch.no_grad(): | |
for i, batch in enumerate(dataloader): | |
images, texts = batch | |
images = images.to(device=device, dtype=cast_dtype, non_blocking=True) | |
texts = texts.to(device=device, non_blocking=True) | |
with autocast(): | |
model_out = model(images, texts) | |
image_features = model_out["image_features"] | |
text_features = model_out["text_features"] | |
logit_scale = model_out["logit_scale"] | |
# features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly | |
# however, system RAM is easily exceeded and compute time becomes problematic | |
all_image_features.append(image_features.cpu()) | |
all_text_features.append(text_features.cpu()) | |
logit_scale = logit_scale.mean() | |
logits_per_image = logit_scale * image_features @ text_features.t() | |
logits_per_text = logits_per_image.t() | |
batch_size = images.shape[0] | |
labels = torch.arange(batch_size, device=device).long() | |
total_loss = ( | |
F.cross_entropy(logits_per_image, labels) + | |
F.cross_entropy(logits_per_text, labels) | |
) / 2 | |
gen_loss = maybe_compute_generative_loss(model_out) | |
cumulative_loss += total_loss * batch_size | |
num_samples += batch_size | |
if is_master(args) and (i % 100) == 0: | |
logging.info( | |
f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]\t" | |
f"Clip Loss: {cumulative_loss / num_samples:.6f}\t") | |
if gen_loss is not None: | |
cumulative_gen_loss += gen_loss * batch_size | |
logging.info( | |
f"Generative Loss: {cumulative_gen_loss / num_samples:.6f}\t") | |
val_metrics = get_clip_metrics( | |
image_features=torch.cat(all_image_features), | |
text_features=torch.cat(all_text_features), | |
logit_scale=logit_scale.cpu(), | |
) | |
loss = cumulative_loss / num_samples | |
metrics.update( | |
{**val_metrics, "clip_val_loss": loss.item(), "epoch": epoch, "num_samples": num_samples} | |
) | |
if gen_loss is not None: | |
gen_loss = cumulative_gen_loss / num_samples | |
metrics.update({"val_generative_loss": gen_loss.item()}) | |
if not metrics: | |
return metrics | |
logging.info( | |
f"Eval Epoch: {epoch} " | |
+ "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()]) | |
) | |
if args.save_logs: | |
for name, val in metrics.items(): | |
if tb_writer is not None: | |
tb_writer.add_scalar(f"val/{name}", val, epoch) | |
with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f: | |
f.write(json.dumps(metrics)) | |
f.write("\n") | |
if args.wandb: | |
assert wandb is not None, 'Please install wandb.' | |
for name, val in metrics.items(): | |
wandb.log({f"val/{name}": val, 'epoch': epoch}) | |
return metrics | |
def get_clip_metrics(image_features, text_features, logit_scale): | |
metrics = {} | |
logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu() | |
logits_per_text = logits_per_image.t().detach().cpu() | |
logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text} | |
ground_truth = torch.arange(len(text_features)).view(-1, 1) | |
for name, logit in logits.items(): | |
ranking = torch.argsort(logit, descending=True) | |
preds = torch.where(ranking == ground_truth)[1] | |
preds = preds.detach().cpu().numpy() | |
metrics[f"{name}_mean_rank"] = preds.mean() + 1 | |
metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1 | |
for k in [1, 5, 10]: | |
metrics[f"{name}_R@{k}"] = np.mean(preds < k) | |
return metrics | |
def maybe_compute_generative_loss(model_out): | |
if "logits" in model_out and "labels" in model_out: | |
token_logits = model_out["logits"] | |
token_labels = model_out["labels"] | |
return F.cross_entropy(token_logits.permute(0, 2, 1), token_labels) | |