Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
from mmcv.cnn import ConvModule | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from mmpose.registry import MODELS | |
from .base_backbone import BaseBackbone | |
from .utils import InvertedResidual | |
class ViPNAS_MobileNetV3(BaseBackbone): | |
"""ViPNAS_MobileNetV3 backbone. | |
"ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search" | |
More details can be found in the `paper | |
<https://arxiv.org/abs/2105.10154>`__ . | |
Args: | |
wid (list(int)): Searched width config for each stage. | |
expan (list(int)): Searched expansion ratio config for each stage. | |
dep (list(int)): Searched depth config for each stage. | |
ks (list(int)): Searched kernel size config for each stage. | |
group (list(int)): Searched group number config for each stage. | |
att (list(bool)): Searched attention config for each stage. | |
stride (list(int)): Stride config for each stage. | |
act (list(dict)): Activation config for each stage. | |
conv_cfg (dict): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Default: -1, which means not freezing any parameters. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save | |
some memory while slowing down the training speed. | |
Default: False. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: | |
``[ | |
dict(type='Normal', std=0.001, layer=['Conv2d']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']) | |
]`` | |
""" | |
def __init__( | |
self, | |
wid=[16, 16, 24, 40, 80, 112, 160], | |
expan=[None, 1, 5, 4, 5, 5, 6], | |
dep=[None, 1, 4, 4, 4, 4, 4], | |
ks=[3, 3, 7, 7, 5, 7, 5], | |
group=[None, 8, 120, 20, 100, 280, 240], | |
att=[None, True, True, False, True, True, True], | |
stride=[2, 1, 2, 2, 2, 1, 2], | |
act=['HSwish', 'ReLU', 'ReLU', 'ReLU', 'HSwish', 'HSwish', 'HSwish'], | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
frozen_stages=-1, | |
norm_eval=False, | |
with_cp=False, | |
init_cfg=[ | |
dict(type='Normal', std=0.001, layer=['Conv2d']), | |
dict(type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) | |
], | |
): | |
# Protect mutable default arguments | |
norm_cfg = copy.deepcopy(norm_cfg) | |
super().__init__(init_cfg=init_cfg) | |
self.wid = wid | |
self.expan = expan | |
self.dep = dep | |
self.ks = ks | |
self.group = group | |
self.att = att | |
self.stride = stride | |
self.act = act | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.frozen_stages = frozen_stages | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
self.conv1 = ConvModule( | |
in_channels=3, | |
out_channels=self.wid[0], | |
kernel_size=self.ks[0], | |
stride=self.stride[0], | |
padding=self.ks[0] // 2, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=dict(type=self.act[0])) | |
self.layers = self._make_layer() | |
def _make_layer(self): | |
layers = [] | |
layer_index = 0 | |
for i, dep in enumerate(self.dep[1:]): | |
mid_channels = self.wid[i + 1] * self.expan[i + 1] | |
if self.att[i + 1]: | |
se_cfg = dict( | |
channels=mid_channels, | |
ratio=4, | |
act_cfg=(dict(type='ReLU'), | |
dict(type='HSigmoid', bias=1.0, divisor=2.0))) | |
else: | |
se_cfg = None | |
if self.expan[i + 1] == 1: | |
with_expand_conv = False | |
else: | |
with_expand_conv = True | |
for j in range(dep): | |
if j == 0: | |
stride = self.stride[i + 1] | |
in_channels = self.wid[i] | |
else: | |
stride = 1 | |
in_channels = self.wid[i + 1] | |
layer = InvertedResidual( | |
in_channels=in_channels, | |
out_channels=self.wid[i + 1], | |
mid_channels=mid_channels, | |
kernel_size=self.ks[i + 1], | |
groups=self.group[i + 1], | |
stride=stride, | |
se_cfg=se_cfg, | |
with_expand_conv=with_expand_conv, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=dict(type=self.act[i + 1]), | |
with_cp=self.with_cp) | |
layer_index += 1 | |
layer_name = f'layer{layer_index}' | |
self.add_module(layer_name, layer) | |
layers.append(layer_name) | |
return layers | |
def forward(self, x): | |
x = self.conv1(x) | |
for i, layer_name in enumerate(self.layers): | |
layer = getattr(self, layer_name) | |
x = layer(x) | |
return (x, ) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
for param in self.conv1.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
layer = getattr(self, f'layer{i}') | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super().train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, _BatchNorm): | |
m.eval() | |