Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch.nn as nn | |
| from mmcv.cnn import ConvModule | |
| from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm | |
| from mmpose.registry import MODELS | |
| from .base_backbone import BaseBackbone | |
| def make_vgg_layer(in_channels, | |
| out_channels, | |
| num_blocks, | |
| conv_cfg=None, | |
| norm_cfg=None, | |
| act_cfg=dict(type='ReLU'), | |
| dilation=1, | |
| with_norm=False, | |
| ceil_mode=False): | |
| layers = [] | |
| for _ in range(num_blocks): | |
| layer = ConvModule( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=3, | |
| dilation=dilation, | |
| padding=dilation, | |
| bias=True, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg) | |
| layers.append(layer) | |
| in_channels = out_channels | |
| layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode)) | |
| return layers | |
| class VGG(BaseBackbone): | |
| """VGG backbone. | |
| Args: | |
| depth (int): Depth of vgg, from {11, 13, 16, 19}. | |
| with_norm (bool): Use BatchNorm or not. | |
| num_classes (int): number of classes for classification. | |
| num_stages (int): VGG stages, normally 5. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| out_indices (Sequence[int]): Output from which stages. If only one | |
| stage is specified, a single tensor (feature map) is returned, | |
| otherwise multiple stages are specified, a tuple of tensors will | |
| be returned. When it is None, the default behavior depends on | |
| whether num_classes is specified. If num_classes <= 0, the default | |
| value is (4, ), outputting the last feature map before classifier. | |
| If num_classes > 0, the default value is (5, ), outputting the | |
| classification score. Default: None. | |
| frozen_stages (int): Stages to be frozen (all param fixed). -1 means | |
| not freezing any parameters. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False. | |
| ceil_mode (bool): Whether to use ceil_mode of MaxPool. Default: False. | |
| with_last_pool (bool): Whether to keep the last pooling before | |
| classifier. Default: True. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: | |
| ``[ | |
| dict(type='Kaiming', layer=['Conv2d']), | |
| dict( | |
| type='Constant', | |
| val=1, | |
| layer=['_BatchNorm', 'GroupNorm']), | |
| dict( | |
| type='Normal', | |
| std=0.01, | |
| layer=['Linear']), | |
| ]`` | |
| """ | |
| # Parameters to build layers. Each element specifies the number of conv in | |
| # each stage. For example, VGG11 contains 11 layers with learnable | |
| # parameters. 11 is computed as 11 = (1 + 1 + 2 + 2 + 2) + 3, | |
| # where 3 indicates the last three fully-connected layers. | |
| arch_settings = { | |
| 11: (1, 1, 2, 2, 2), | |
| 13: (2, 2, 2, 2, 2), | |
| 16: (2, 2, 3, 3, 3), | |
| 19: (2, 2, 4, 4, 4) | |
| } | |
| def __init__(self, | |
| depth, | |
| num_classes=-1, | |
| num_stages=5, | |
| dilations=(1, 1, 1, 1, 1), | |
| out_indices=None, | |
| frozen_stages=-1, | |
| conv_cfg=None, | |
| norm_cfg=None, | |
| act_cfg=dict(type='ReLU'), | |
| norm_eval=False, | |
| ceil_mode=False, | |
| with_last_pool=True, | |
| init_cfg=[ | |
| dict(type='Kaiming', layer=['Conv2d']), | |
| dict( | |
| type='Constant', | |
| val=1, | |
| layer=['_BatchNorm', 'GroupNorm']), | |
| dict(type='Normal', std=0.01, layer=['Linear']), | |
| ]): | |
| super().__init__(init_cfg=init_cfg) | |
| if depth not in self.arch_settings: | |
| raise KeyError(f'invalid depth {depth} for vgg') | |
| assert num_stages >= 1 and num_stages <= 5 | |
| stage_blocks = self.arch_settings[depth] | |
| self.stage_blocks = stage_blocks[:num_stages] | |
| assert len(dilations) == num_stages | |
| self.num_classes = num_classes | |
| self.frozen_stages = frozen_stages | |
| self.norm_eval = norm_eval | |
| with_norm = norm_cfg is not None | |
| if out_indices is None: | |
| out_indices = (5, ) if num_classes > 0 else (4, ) | |
| assert max(out_indices) <= num_stages | |
| self.out_indices = out_indices | |
| self.in_channels = 3 | |
| start_idx = 0 | |
| vgg_layers = [] | |
| self.range_sub_modules = [] | |
| for i, num_blocks in enumerate(self.stage_blocks): | |
| num_modules = num_blocks + 1 | |
| end_idx = start_idx + num_modules | |
| dilation = dilations[i] | |
| out_channels = 64 * 2**i if i < 4 else 512 | |
| vgg_layer = make_vgg_layer( | |
| self.in_channels, | |
| out_channels, | |
| num_blocks, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| dilation=dilation, | |
| with_norm=with_norm, | |
| ceil_mode=ceil_mode) | |
| vgg_layers.extend(vgg_layer) | |
| self.in_channels = out_channels | |
| self.range_sub_modules.append([start_idx, end_idx]) | |
| start_idx = end_idx | |
| if not with_last_pool: | |
| vgg_layers.pop(-1) | |
| self.range_sub_modules[-1][1] -= 1 | |
| self.module_name = 'features' | |
| self.add_module(self.module_name, nn.Sequential(*vgg_layers)) | |
| if self.num_classes > 0: | |
| self.classifier = nn.Sequential( | |
| nn.Linear(512 * 7 * 7, 4096), | |
| nn.ReLU(True), | |
| nn.Dropout(), | |
| nn.Linear(4096, 4096), | |
| nn.ReLU(True), | |
| nn.Dropout(), | |
| nn.Linear(4096, num_classes), | |
| ) | |
| def forward(self, x): | |
| outs = [] | |
| vgg_layers = getattr(self, self.module_name) | |
| for i in range(len(self.stage_blocks)): | |
| for j in range(*self.range_sub_modules[i]): | |
| vgg_layer = vgg_layers[j] | |
| x = vgg_layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| if self.num_classes > 0: | |
| x = x.view(x.size(0), -1) | |
| x = self.classifier(x) | |
| outs.append(x) | |
| return tuple(outs) | |
| def _freeze_stages(self): | |
| vgg_layers = getattr(self, self.module_name) | |
| for i in range(self.frozen_stages): | |
| for j in range(*self.range_sub_modules[i]): | |
| m = vgg_layers[j] | |
| m.eval() | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| def train(self, mode=True): | |
| super().train(mode) | |
| self._freeze_stages() | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| # trick: eval have effect on BatchNorm only | |
| if isinstance(m, _BatchNorm): | |
| m.eval() | |