Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm | |
from mmpose.registry import MODELS | |
from .base_backbone import BaseBackbone | |
def make_vgg_layer(in_channels, | |
out_channels, | |
num_blocks, | |
conv_cfg=None, | |
norm_cfg=None, | |
act_cfg=dict(type='ReLU'), | |
dilation=1, | |
with_norm=False, | |
ceil_mode=False): | |
layers = [] | |
for _ in range(num_blocks): | |
layer = ConvModule( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
dilation=dilation, | |
padding=dilation, | |
bias=True, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
layers.append(layer) | |
in_channels = out_channels | |
layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode)) | |
return layers | |
class VGG(BaseBackbone): | |
"""VGG backbone. | |
Args: | |
depth (int): Depth of vgg, from {11, 13, 16, 19}. | |
with_norm (bool): Use BatchNorm or not. | |
num_classes (int): number of classes for classification. | |
num_stages (int): VGG stages, normally 5. | |
dilations (Sequence[int]): Dilation of each stage. | |
out_indices (Sequence[int]): Output from which stages. If only one | |
stage is specified, a single tensor (feature map) is returned, | |
otherwise multiple stages are specified, a tuple of tensors will | |
be returned. When it is None, the default behavior depends on | |
whether num_classes is specified. If num_classes <= 0, the default | |
value is (4, ), outputting the last feature map before classifier. | |
If num_classes > 0, the default value is (5, ), outputting the | |
classification score. Default: None. | |
frozen_stages (int): Stages to be frozen (all param fixed). -1 means | |
not freezing any parameters. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
ceil_mode (bool): Whether to use ceil_mode of MaxPool. Default: False. | |
with_last_pool (bool): Whether to keep the last pooling before | |
classifier. Default: True. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: | |
``[ | |
dict(type='Kaiming', layer=['Conv2d']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']), | |
dict( | |
type='Normal', | |
std=0.01, | |
layer=['Linear']), | |
]`` | |
""" | |
# Parameters to build layers. Each element specifies the number of conv in | |
# each stage. For example, VGG11 contains 11 layers with learnable | |
# parameters. 11 is computed as 11 = (1 + 1 + 2 + 2 + 2) + 3, | |
# where 3 indicates the last three fully-connected layers. | |
arch_settings = { | |
11: (1, 1, 2, 2, 2), | |
13: (2, 2, 2, 2, 2), | |
16: (2, 2, 3, 3, 3), | |
19: (2, 2, 4, 4, 4) | |
} | |
def __init__(self, | |
depth, | |
num_classes=-1, | |
num_stages=5, | |
dilations=(1, 1, 1, 1, 1), | |
out_indices=None, | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=None, | |
act_cfg=dict(type='ReLU'), | |
norm_eval=False, | |
ceil_mode=False, | |
with_last_pool=True, | |
init_cfg=[ | |
dict(type='Kaiming', layer=['Conv2d']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']), | |
dict(type='Normal', std=0.01, layer=['Linear']), | |
]): | |
super().__init__(init_cfg=init_cfg) | |
if depth not in self.arch_settings: | |
raise KeyError(f'invalid depth {depth} for vgg') | |
assert num_stages >= 1 and num_stages <= 5 | |
stage_blocks = self.arch_settings[depth] | |
self.stage_blocks = stage_blocks[:num_stages] | |
assert len(dilations) == num_stages | |
self.num_classes = num_classes | |
self.frozen_stages = frozen_stages | |
self.norm_eval = norm_eval | |
with_norm = norm_cfg is not None | |
if out_indices is None: | |
out_indices = (5, ) if num_classes > 0 else (4, ) | |
assert max(out_indices) <= num_stages | |
self.out_indices = out_indices | |
self.in_channels = 3 | |
start_idx = 0 | |
vgg_layers = [] | |
self.range_sub_modules = [] | |
for i, num_blocks in enumerate(self.stage_blocks): | |
num_modules = num_blocks + 1 | |
end_idx = start_idx + num_modules | |
dilation = dilations[i] | |
out_channels = 64 * 2**i if i < 4 else 512 | |
vgg_layer = make_vgg_layer( | |
self.in_channels, | |
out_channels, | |
num_blocks, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
dilation=dilation, | |
with_norm=with_norm, | |
ceil_mode=ceil_mode) | |
vgg_layers.extend(vgg_layer) | |
self.in_channels = out_channels | |
self.range_sub_modules.append([start_idx, end_idx]) | |
start_idx = end_idx | |
if not with_last_pool: | |
vgg_layers.pop(-1) | |
self.range_sub_modules[-1][1] -= 1 | |
self.module_name = 'features' | |
self.add_module(self.module_name, nn.Sequential(*vgg_layers)) | |
if self.num_classes > 0: | |
self.classifier = nn.Sequential( | |
nn.Linear(512 * 7 * 7, 4096), | |
nn.ReLU(True), | |
nn.Dropout(), | |
nn.Linear(4096, 4096), | |
nn.ReLU(True), | |
nn.Dropout(), | |
nn.Linear(4096, num_classes), | |
) | |
def forward(self, x): | |
outs = [] | |
vgg_layers = getattr(self, self.module_name) | |
for i in range(len(self.stage_blocks)): | |
for j in range(*self.range_sub_modules[i]): | |
vgg_layer = vgg_layers[j] | |
x = vgg_layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
if self.num_classes > 0: | |
x = x.view(x.size(0), -1) | |
x = self.classifier(x) | |
outs.append(x) | |
return tuple(outs) | |
def _freeze_stages(self): | |
vgg_layers = getattr(self, self.module_name) | |
for i in range(self.frozen_stages): | |
for j in range(*self.range_sub_modules[i]): | |
m = vgg_layers[j] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super().train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
# trick: eval have effect on BatchNorm only | |
if isinstance(m, _BatchNorm): | |
m.eval() | |