Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import ConvModule, build_conv_layer, build_norm_layer | |
| from mmengine.model import BaseModule, constant_init | |
| from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm | |
| from mmpose.registry import MODELS | |
| from .base_backbone import BaseBackbone | |
| class BasicBlock(BaseModule): | |
| """BasicBlock for ResNet. | |
| Args: | |
| in_channels (int): Input channels of this block. | |
| out_channels (int): Output channels of this block. | |
| expansion (int): The ratio of ``out_channels/mid_channels`` where | |
| ``mid_channels`` is the output channels of conv1. This is a | |
| reserved argument in BasicBlock and should always be 1. Default: 1. | |
| stride (int): stride of the block. Default: 1 | |
| dilation (int): dilation of convolution. Default: 1 | |
| downsample (nn.Module): downsample operation on identity branch. | |
| Default: None. | |
| style (str): `pytorch` or `caffe`. It is unused and reserved for | |
| unified API with Bottleneck. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| expansion=1, | |
| stride=1, | |
| dilation=1, | |
| downsample=None, | |
| style='pytorch', | |
| with_cp=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| init_cfg=None): | |
| # Protect mutable default arguments | |
| norm_cfg = copy.deepcopy(norm_cfg) | |
| super().__init__(init_cfg=init_cfg) | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.expansion = expansion | |
| assert self.expansion == 1 | |
| assert out_channels % expansion == 0 | |
| self.mid_channels = out_channels // expansion | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.style = style | |
| self.with_cp = with_cp | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.norm1_name, norm1 = build_norm_layer( | |
| norm_cfg, self.mid_channels, postfix=1) | |
| self.norm2_name, norm2 = build_norm_layer( | |
| norm_cfg, out_channels, postfix=2) | |
| self.conv1 = build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| self.mid_channels, | |
| 3, | |
| stride=stride, | |
| padding=dilation, | |
| dilation=dilation, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| self.conv2 = build_conv_layer( | |
| conv_cfg, | |
| self.mid_channels, | |
| out_channels, | |
| 3, | |
| padding=1, | |
| bias=False) | |
| self.add_module(self.norm2_name, norm2) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| def norm1(self): | |
| """nn.Module: the normalization layer named "norm1" """ | |
| return getattr(self, self.norm1_name) | |
| def norm2(self): | |
| """nn.Module: the normalization layer named "norm2" """ | |
| return getattr(self, self.norm2_name) | |
| def forward(self, x): | |
| """Forward function.""" | |
| def _inner_forward(x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.norm2(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(BaseModule): | |
| """Bottleneck block for ResNet. | |
| Args: | |
| in_channels (int): Input channels of this block. | |
| out_channels (int): Output channels of this block. | |
| expansion (int): The ratio of ``out_channels/mid_channels`` where | |
| ``mid_channels`` is the input/output channels of conv2. Default: 4. | |
| stride (int): stride of the block. Default: 1 | |
| dilation (int): dilation of convolution. Default: 1 | |
| downsample (nn.Module): downsample operation on identity branch. | |
| Default: None. | |
| style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the | |
| stride-two layer is the 3x3 conv layer, otherwise the stride-two | |
| layer is the first 1x1 conv layer. Default: "pytorch". | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: None | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| expansion=4, | |
| stride=1, | |
| dilation=1, | |
| downsample=None, | |
| style='pytorch', | |
| with_cp=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| init_cfg=None): | |
| # Protect mutable default arguments | |
| norm_cfg = copy.deepcopy(norm_cfg) | |
| super().__init__(init_cfg=init_cfg) | |
| assert style in ['pytorch', 'caffe'] | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.expansion = expansion | |
| assert out_channels % expansion == 0 | |
| self.mid_channels = out_channels // expansion | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.style = style | |
| self.with_cp = with_cp | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| if self.style == 'pytorch': | |
| self.conv1_stride = 1 | |
| self.conv2_stride = stride | |
| else: | |
| self.conv1_stride = stride | |
| self.conv2_stride = 1 | |
| self.norm1_name, norm1 = build_norm_layer( | |
| norm_cfg, self.mid_channels, postfix=1) | |
| self.norm2_name, norm2 = build_norm_layer( | |
| norm_cfg, self.mid_channels, postfix=2) | |
| self.norm3_name, norm3 = build_norm_layer( | |
| norm_cfg, out_channels, postfix=3) | |
| self.conv1 = build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| self.mid_channels, | |
| kernel_size=1, | |
| stride=self.conv1_stride, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| self.conv2 = build_conv_layer( | |
| conv_cfg, | |
| self.mid_channels, | |
| self.mid_channels, | |
| kernel_size=3, | |
| stride=self.conv2_stride, | |
| padding=dilation, | |
| dilation=dilation, | |
| bias=False) | |
| self.add_module(self.norm2_name, norm2) | |
| self.conv3 = build_conv_layer( | |
| conv_cfg, | |
| self.mid_channels, | |
| out_channels, | |
| kernel_size=1, | |
| bias=False) | |
| self.add_module(self.norm3_name, norm3) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| def norm1(self): | |
| """nn.Module: the normalization layer named "norm1" """ | |
| return getattr(self, self.norm1_name) | |
| def norm2(self): | |
| """nn.Module: the normalization layer named "norm2" """ | |
| return getattr(self, self.norm2_name) | |
| def norm3(self): | |
| """nn.Module: the normalization layer named "norm3" """ | |
| return getattr(self, self.norm3_name) | |
| def forward(self, x): | |
| """Forward function.""" | |
| def _inner_forward(x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.norm2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.norm3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| def get_expansion(block, expansion=None): | |
| """Get the expansion of a residual block. | |
| The block expansion will be obtained by the following order: | |
| 1. If ``expansion`` is given, just return it. | |
| 2. If ``block`` has the attribute ``expansion``, then return | |
| ``block.expansion``. | |
| 3. Return the default value according the the block type: | |
| 1 for ``BasicBlock`` and 4 for ``Bottleneck``. | |
| Args: | |
| block (class): The block class. | |
| expansion (int | None): The given expansion ratio. | |
| Returns: | |
| int: The expansion of the block. | |
| """ | |
| if isinstance(expansion, int): | |
| assert expansion > 0 | |
| elif expansion is None: | |
| if hasattr(block, 'expansion'): | |
| expansion = block.expansion | |
| elif issubclass(block, BasicBlock): | |
| expansion = 1 | |
| elif issubclass(block, Bottleneck): | |
| expansion = 4 | |
| else: | |
| raise TypeError(f'expansion is not specified for {block.__name__}') | |
| else: | |
| raise TypeError('expansion must be an integer or None') | |
| return expansion | |
| class ResLayer(nn.Sequential): | |
| """ResLayer to build ResNet style backbone. | |
| Args: | |
| block (nn.Module): Residual block used to build ResLayer. | |
| num_blocks (int): Number of blocks. | |
| in_channels (int): Input channels of this block. | |
| out_channels (int): Output channels of this block. | |
| expansion (int, optional): The expansion for BasicBlock/Bottleneck. | |
| If not specified, it will firstly be obtained via | |
| ``block.expansion``. If the block has no attribute "expansion", | |
| the following default values will be used: 1 for BasicBlock and | |
| 4 for Bottleneck. Default: None. | |
| stride (int): stride of the first block. Default: 1. | |
| avg_down (bool): Use AvgPool instead of stride conv when | |
| downsampling in the bottleneck. Default: False | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| downsample_first (bool): Downsample at the first block or last block. | |
| False for Hourglass, True for ResNet. Default: True | |
| """ | |
| def __init__(self, | |
| block, | |
| num_blocks, | |
| in_channels, | |
| out_channels, | |
| expansion=None, | |
| stride=1, | |
| avg_down=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| downsample_first=True, | |
| **kwargs): | |
| # Protect mutable default arguments | |
| norm_cfg = copy.deepcopy(norm_cfg) | |
| self.block = block | |
| self.expansion = get_expansion(block, expansion) | |
| downsample = None | |
| if stride != 1 or in_channels != out_channels: | |
| downsample = [] | |
| conv_stride = stride | |
| if avg_down and stride != 1: | |
| conv_stride = 1 | |
| downsample.append( | |
| nn.AvgPool2d( | |
| kernel_size=stride, | |
| stride=stride, | |
| ceil_mode=True, | |
| count_include_pad=False)) | |
| downsample.extend([ | |
| build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=conv_stride, | |
| bias=False), | |
| build_norm_layer(norm_cfg, out_channels)[1] | |
| ]) | |
| downsample = nn.Sequential(*downsample) | |
| layers = [] | |
| if downsample_first: | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| expansion=self.expansion, | |
| stride=stride, | |
| downsample=downsample, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| **kwargs)) | |
| in_channels = out_channels | |
| for _ in range(1, num_blocks): | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| expansion=self.expansion, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| **kwargs)) | |
| else: # downsample_first=False is for HourglassModule | |
| for i in range(0, num_blocks - 1): | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| expansion=self.expansion, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| **kwargs)) | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| expansion=self.expansion, | |
| stride=stride, | |
| downsample=downsample, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| **kwargs)) | |
| super().__init__(*layers) | |
| class ResNet(BaseBackbone): | |
| """ResNet backbone. | |
| Please refer to the `paper <https://arxiv.org/abs/1512.03385>`__ for | |
| details. | |
| Args: | |
| depth (int): Network depth, from {18, 34, 50, 101, 152}. | |
| in_channels (int): Number of input image channels. Default: 3. | |
| stem_channels (int): Output channels of the stem layer. Default: 64. | |
| base_channels (int): Middle channels of the first stage. Default: 64. | |
| num_stages (int): Stages of the network. Default: 4. | |
| strides (Sequence[int]): Strides of the first block of each stage. | |
| Default: ``(1, 2, 2, 2)``. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| Default: ``(1, 1, 1, 1)``. | |
| out_indices (Sequence[int]): Output from which stages. If only one | |
| stage is specified, a single tensor (feature map) is returned, | |
| otherwise multiple stages are specified, a tuple of tensors will | |
| be returned. Default: ``(3, )``. | |
| style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
| layer is the 3x3 conv layer, otherwise the stride-two layer is | |
| the first 1x1 conv layer. | |
| deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. | |
| Default: False. | |
| avg_down (bool): Use AvgPool instead of stride conv when | |
| downsampling in the bottleneck. Default: False. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. Default: -1. | |
| conv_cfg (dict | None): The config dict for conv layers. Default: None. | |
| norm_cfg (dict): The config dict for norm layers. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| zero_init_residual (bool): Whether to use zero init for last norm layer | |
| in resblocks to let them behave as identity. Default: True. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Default: | |
| ``[ | |
| dict(type='Kaiming', layer=['Conv2d']), | |
| dict( | |
| type='Constant', | |
| val=1, | |
| layer=['_BatchNorm', 'GroupNorm']) | |
| ]`` | |
| Example: | |
| >>> from mmpose.models import ResNet | |
| >>> import torch | |
| >>> self = ResNet(depth=18, out_indices=(0, 1, 2, 3)) | |
| >>> self.eval() | |
| >>> inputs = torch.rand(1, 3, 32, 32) | |
| >>> level_outputs = self.forward(inputs) | |
| >>> for level_out in level_outputs: | |
| ... print(tuple(level_out.shape)) | |
| (1, 64, 8, 8) | |
| (1, 128, 4, 4) | |
| (1, 256, 2, 2) | |
| (1, 512, 1, 1) | |
| """ | |
| arch_settings = { | |
| 18: (BasicBlock, (2, 2, 2, 2)), | |
| 34: (BasicBlock, (3, 4, 6, 3)), | |
| 50: (Bottleneck, (3, 4, 6, 3)), | |
| 101: (Bottleneck, (3, 4, 23, 3)), | |
| 152: (Bottleneck, (3, 8, 36, 3)) | |
| } | |
| def __init__(self, | |
| depth, | |
| in_channels=3, | |
| stem_channels=64, | |
| base_channels=64, | |
| expansion=None, | |
| num_stages=4, | |
| strides=(1, 2, 2, 2), | |
| dilations=(1, 1, 1, 1), | |
| out_indices=(3, ), | |
| style='pytorch', | |
| deep_stem=False, | |
| avg_down=False, | |
| frozen_stages=-1, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', requires_grad=True), | |
| norm_eval=False, | |
| with_cp=False, | |
| zero_init_residual=True, | |
| init_cfg=[ | |
| dict(type='Kaiming', layer=['Conv2d']), | |
| dict( | |
| type='Constant', | |
| val=1, | |
| layer=['_BatchNorm', 'GroupNorm']) | |
| ]): | |
| # Protect mutable default arguments | |
| norm_cfg = copy.deepcopy(norm_cfg) | |
| super(ResNet, self).__init__(init_cfg) | |
| if depth not in self.arch_settings: | |
| raise KeyError(f'invalid depth {depth} for resnet') | |
| self.depth = depth | |
| self.stem_channels = stem_channels | |
| self.base_channels = base_channels | |
| self.num_stages = num_stages | |
| assert 1 <= num_stages <= 4 | |
| self.strides = strides | |
| self.dilations = dilations | |
| assert len(strides) == len(dilations) == num_stages | |
| self.out_indices = out_indices | |
| assert max(out_indices) < num_stages | |
| self.style = style | |
| self.deep_stem = deep_stem | |
| self.avg_down = avg_down | |
| self.frozen_stages = frozen_stages | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.with_cp = with_cp | |
| self.norm_eval = norm_eval | |
| self.zero_init_residual = zero_init_residual | |
| self.block, stage_blocks = self.arch_settings[depth] | |
| self.stage_blocks = stage_blocks[:num_stages] | |
| self.expansion = get_expansion(self.block, expansion) | |
| self._make_stem_layer(in_channels, stem_channels) | |
| self.res_layers = [] | |
| _in_channels = stem_channels | |
| _out_channels = base_channels * self.expansion | |
| for i, num_blocks in enumerate(self.stage_blocks): | |
| stride = strides[i] | |
| dilation = dilations[i] | |
| res_layer = self.make_res_layer( | |
| block=self.block, | |
| num_blocks=num_blocks, | |
| in_channels=_in_channels, | |
| out_channels=_out_channels, | |
| expansion=self.expansion, | |
| stride=stride, | |
| dilation=dilation, | |
| style=self.style, | |
| avg_down=self.avg_down, | |
| with_cp=with_cp, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg) | |
| _in_channels = _out_channels | |
| _out_channels *= 2 | |
| layer_name = f'layer{i + 1}' | |
| self.add_module(layer_name, res_layer) | |
| self.res_layers.append(layer_name) | |
| self._freeze_stages() | |
| self.feat_dim = res_layer[-1].out_channels | |
| def make_res_layer(self, **kwargs): | |
| """Make a ResLayer.""" | |
| return ResLayer(**kwargs) | |
| def norm1(self): | |
| """nn.Module: the normalization layer named "norm1" """ | |
| return getattr(self, self.norm1_name) | |
| def _make_stem_layer(self, in_channels, stem_channels): | |
| """Make stem layer.""" | |
| if self.deep_stem: | |
| self.stem = nn.Sequential( | |
| ConvModule( | |
| in_channels, | |
| stem_channels // 2, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=True), | |
| ConvModule( | |
| stem_channels // 2, | |
| stem_channels // 2, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=True), | |
| ConvModule( | |
| stem_channels // 2, | |
| stem_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=True)) | |
| else: | |
| self.conv1 = build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| stem_channels, | |
| kernel_size=7, | |
| stride=2, | |
| padding=3, | |
| bias=False) | |
| self.norm1_name, norm1 = build_norm_layer( | |
| self.norm_cfg, stem_channels, postfix=1) | |
| self.add_module(self.norm1_name, norm1) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| def _freeze_stages(self): | |
| """Freeze parameters.""" | |
| if self.frozen_stages >= 0: | |
| if self.deep_stem: | |
| self.stem.eval() | |
| for param in self.stem.parameters(): | |
| param.requires_grad = False | |
| else: | |
| self.norm1.eval() | |
| for m in [self.conv1, self.norm1]: | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| for i in range(1, self.frozen_stages + 1): | |
| m = getattr(self, f'layer{i}') | |
| m.eval() | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| def init_weights(self): | |
| """Initialize the weights in backbone.""" | |
| super(ResNet, self).init_weights() | |
| if (isinstance(self.init_cfg, dict) | |
| and self.init_cfg['type'] == 'Pretrained'): | |
| # Suppress zero_init_residual if use pretrained model. | |
| return | |
| if self.zero_init_residual: | |
| for m in self.modules(): | |
| if isinstance(m, Bottleneck): | |
| constant_init(m.norm3, 0) | |
| elif isinstance(m, BasicBlock): | |
| constant_init(m.norm2, 0) | |
| def forward(self, x): | |
| """Forward function.""" | |
| if self.deep_stem: | |
| x = self.stem(x) | |
| else: | |
| x = self.conv1(x) | |
| x = self.norm1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| outs = [] | |
| for i, layer_name in enumerate(self.res_layers): | |
| res_layer = getattr(self, layer_name) | |
| x = res_layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| """Convert the model into training mode.""" | |
| super().train(mode) | |
| self._freeze_stages() | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| # trick: eval have effect on BatchNorm only | |
| if isinstance(m, _BatchNorm): | |
| m.eval() | |
| class ResNetV1d(ResNet): | |
| r"""ResNetV1d variant described in `Bag of Tricks | |
| <https://arxiv.org/pdf/1812.01187.pdf>`__. | |
| Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in | |
| the input stem with three 3x3 convs. And in the downsampling block, a 2x2 | |
| avg_pool with stride 2 is added before conv, whose stride is changed to 1. | |
| """ | |
| def __init__(self, **kwargs): | |
| super().__init__(deep_stem=True, avg_down=True, **kwargs) | |