Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmpose.registry import MODELS | |
from .base_backbone import BaseBackbone | |
class AlexNet(BaseBackbone): | |
"""`AlexNet <https://en.wikipedia.org/wiki/AlexNet>`__ backbone. | |
The input for AlexNet is a 224x224 RGB image. | |
Args: | |
num_classes (int): number of classes for classification. | |
The default value is -1, which uses the backbone as | |
a feature extractor without the top classifier. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None | |
""" | |
def __init__(self, num_classes=-1, init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.num_classes = num_classes | |
self.features = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=3, stride=2), | |
nn.Conv2d(64, 192, kernel_size=5, padding=2), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=3, stride=2), | |
nn.Conv2d(192, 384, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(384, 256, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=3, stride=2), | |
) | |
if self.num_classes > 0: | |
self.classifier = nn.Sequential( | |
nn.Dropout(), | |
nn.Linear(256 * 6 * 6, 4096), | |
nn.ReLU(inplace=True), | |
nn.Dropout(), | |
nn.Linear(4096, 4096), | |
nn.ReLU(inplace=True), | |
nn.Linear(4096, num_classes), | |
) | |
def forward(self, x): | |
x = self.features(x) | |
if self.num_classes > 0: | |
x = x.view(x.size(0), 256 * 6 * 6) | |
x = self.classifier(x) | |
return (x, ) | |